Tetrahedron 64 (2008) 5416-5425

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Synthesis of 1-azaxanthones by condensation of 1,3-bis(trimethylsilyloxy)-1,3-butadienes with 3-(cyano)benzopyrylium triflates and subsequent domino 'retro-Michael/nitrile-addition/heterocyclization' reaction

Muhammad A. Rashid^a, Nasir Rasool^a, Bettina Appel^a, Muhammad Adeel^a, Vahuni Karapetyan^a, Satenik Mkrtchyan^a, Helmut Reinke^a, Christine Fischer^b, Peter Langer^{a,b,*}

^a Institut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany ^b Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059 Rostock, Germany

ARTICLE INFO

Article history: Received 4 January 2008 Accepted 25 February 2008 Available online 18 March 2008

ABSTRACT

Functionalized 1-azaxanthones (5-oxo-5*H*-[1]-benzopyrano[2,3-*b*]pyridines) were prepared by TMSOTfmediated condensation of 1,3-bis(trimethylsilyloxy)-1,3-butadienes with 3-cyanochromones and subsequent base-mediated domino 'retro-Michael/nitrile-addition/heterocyclization' reaction. © 2008 Elsevier Ltd. All rights reserved.

1. Introduction

1-Azaxanthones (i.e., 5-oxo-5H-[1]-benzopyrano[2,3-b]pyridines) are of considerable pharmacological relevance. For example, they show anti-inflammatory activity and represent inhibitors of the passive cutaneous anaphylaxis.¹ 1-Azaxanthones are available, based on pioneering work of Ghosh and co-workers,^{2a} by base-mediated reaction of 3-cyanochromones with active methylene compounds.² Despite its preparative utility, the scope of this approach is limited to specific substrates and substitution patterns. 4-(Trimethylsilyloxy)benzopyrylium triflates can be readily generated by addition of trimethylsilyl-trifluoromethanesulfonate (TMSOTf) to chromones. Their reaction with nucleophiles allows the regioselective functionalization of carbon atom C-2 of the chromone moiety. The formal [4+2]-cycloaddition of 1,3-butadienes with 4-(trimethylsilyloxy)benzopyrylium triflates was first reported by Akiba and co-workers.³ Later, the TMSOTf-mediated [4+2]-cycloaddition of 1,3-butadienes with 3-cyanochromone, via its 4-(trimethylsilyloxy)benzopyrylium triflate, has been reported.⁴ In the course of our interest in the development of new domino reactions⁵ of 4-(silyloxy)benzopyrylium triflates,⁶ we recently reported⁷ the TMSOTf-mediated reaction of 3-cyanochromones with 1,3-bis(trimethylsilyloxy)-1,3-butadienes.⁸ These reactions allow a convenient synthesis of functionalized 1-azaxanthones, which are not readily available by other methods. Herein, full details of our methodology and a comprehensive study related to its preparative scope are reported.

2. Results and discussion

The TMSOTf-mediated reaction of **1a** with 1,3-bis(trimethylsilyloxy)-1,3-butadiene **2a**, readily available in two steps from methyl acetoacetate,⁹ afforded the condensation product **3a** by regioselective attack of the terminal carbon atom of **2a** onto carbon atom C-2 of **1a** and subsequent hydrolysis. Treatment of an ethanol solution of crude **3a** with triethylamine afforded 1-azaxanthone **4a** (Scheme 1). The base-mediated retro-Michael reaction of **3a** gave open-chained intermediate **B**. The attack of the hydroxy group onto the nitrile gave intermediate **C**. The attack of the imino nitrogen atom onto the carbonyl group (intermediate **D**) and subsequent aromatization by extrusion of water afforded **4a**. The transformation of **3a** into **4a** can be regarded as a domino 'retro-Michael/nitrileaddition/heterocyclization' reaction.

The reaction of 1,3-bis(trimethylsilyloxy)-1,3-butadienes 2a-c, prepared from methyl, ethyl and isopropyl acetoacetate, with parent 3-cyanochromone (1a) and with the alkyl- and halogensubstituted 3-cyanochromones 1b-g afforded products 3a-j, which were transformed, by reaction with NEt₃, into the 1-azaxanthones 4a-j (Scheme 2, Table 1). The reaction of parent 3-cyanochromone (1a) with 1,3-bis(trimethylsilyloxy)-1,3-butadiene 2d, prepared from methyl 3-oxopentanoate, afforded 3a. Treatment of 3a with triethylamine afforded dibenzo[*b*,*d*]pyran-6-one **5a** rather than the expected methyl-substituted azaxanthone 4k. The formation of 5a can be explained by a competing domino 'retro-Michael/aldol/ lactonization' reaction (Scheme 3).¹⁰ In contrast, the reaction of 2e (derived from ethyl 3-oxopentanoate) with chlorinated 3cvanochromone **1e** afforded azaxanthone **4l** (via **3l**). The reaction of parent cyanochromone 1a with 1,3-bis(silyl enol ether) 2f, prepared from ethyl 3-oxohexanoate, afforded **3m**. Treatment of the

^{*} Corresponding author. Tel.: +49 381 4986410; fax: +49 381 4986412. *E-mail address:* peter.langer@uni-rostock.de (P. Langer).

^{0040-4020/\$ -} see front matter $\textcircled{\sc 0}$ 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2008.02.105

Table 1

Scheme 1. Mechanism of the formation of 4a.

latter with base resulted in formation of a separable mixture of ethyl-substituted azaxanthone **4m** and dibenzo[*b*,*d*]pyran-6-one **5b**. In contrast, the exclusive formation of azaxanthones **4n**,**o** was observed when substituted cyanochromones **1e** and **1h** were employed. The propyl- and butyl-substituted dibenzo[*b*,*d*]pyran-6-ones **5c** and **5d** were isolated from the reaction of parent cyanochromone **1a** with 1,3-bis(trimethylsilyloxy)-1,3-butadienes **2g** and **2h**. The reaction of **2i** with **1a** and **1e** exclusively afforded the

Scheme 2. Synthesis of 1-azaxanthones **4a–am**: (i) (1) **1a–h**, Me₃SiOTf, 1 h, 20 °C, (2) **2a–z**, CH₂Cl₂, $0 \rightarrow 20$ °C, 12 h, (3) HCl (10%); (ii) (1) NEt₃, EtOH, 20 °C, 12 h, (2) HCl (1 M).

Products and yields										
1	2	4	5	R ¹	\mathbb{R}^2	R ³	R ⁴	R ⁵	R ⁶	% (4,5) ^a
a	a	a		Н	Н	OMe	Н	Н	Н	41
a	b	b		Н	Н	OEt	Н	Н	Н	46
a	с	с		Н	Н	0 ⁱ Pr	Н	Н	Н	42
b	а	d		Н	Н	OEt	Me	Н	Н	40
с	с	e		Н	Н	O'Pr	Et	Н	Н	31
d	а	f		Н	Н	OEt	'Pr	Н	Н	41
e	а	g		Н	Н	OEt	Cl	Н	Н	37
f	а	h		Н	Н	OEt	Cl	Н	Cl	48
g	а	i		Н	Н	OEt	Br	Н	Н	34
g	с	j		Н	Н	0 ⁱ Pr	Br	Н	Н	32
a	d	k	а	Me	Н	OMe	Н	Н	Н	0 (34) ^b
e	e	1		Me	Н	OEt	Cl	Н	Н	41
a	f	m	b	Et	Н	OEt	Н	Н	Н	17 (34) ^b
e	f	n		Et	Н	OEt	Cl	Н	Н	46
h	f	0		Et	Н	OEt	Me	Me	Н	38
a	g	р	с	ⁿ Pr	Н	OMe	Н	Н	Н	0 (37) ^b
a	h	q	d	ⁿ Bu	Н	OMe	Н	Н	Н	0 (42) ^b
a	i	r		ⁿ Hept	Н	OEt	Н	Н	Н	25
e	i	s		ⁿ Hept	Н	OEt	Cl	Н	Н	38
a	j	t		Allyl	Н	OMe	Н	Н	Н	38
е	j	u		Allyl	Н	OMe	Cl	Н	Н	30
a	k	v		Ph	Н	OMe	Н	Н	Н	62
a	1	w		$4-Me(C_{6}H_{4})$	Н	OMe	Н	Н	Н	63
a	m	х		$4-Cl(C_6H_4)$	Н	OMe	Н	Н	Н	50
е	n	У		$2-MeO(C_6H_4)$	Н	OMe	Cl	Н	Н	40
b	n	z		$2-MeO(C_6H_4)$	Н	OMe	Me	Н	Н	32
a	0	aa		MeO	Н	OMe	Н	Н	Н	31
a	р	ab		PhO	Н	OEt	Н	Н	Н	66
f	p	ac		PhO	Н	OEt	Cl	Н	Cl	44
h	q	ad		$4-Cl(C_{6}H_{4})O$	Н	OMe	Me	Me	Н	33
f	r	ae		4-Me(C ₆ H ₄)O	Н	OMe	Cl	Н	Cl	42
a	s	af		PhS	Н	OEt	Н	Н	Н	51
h	t	ag		$4-Cl(C_6H_4)S$	Н	OEt	Me	Me	Н	56
b	u	ah		$4-Me(C_6H_4)S$	Н	OEt	Me	Н	Н	63
f	v	ai		4-MeO(C ₆ H ₄)S	Н	OEt	Cl	Н	Cl	45
a	w	aj		Н	Me	OEt	Н	Н	Н	31
a	х	ak		Н	Et	OMe	Н	Н	Н	34
a	у	al		-(CH ₂) ₃ -		OEt	Н	Н	Н	36
a	z	am		-CH ₂ CHMeCH ₂ -		OMe	Н	Н	Н	32 ^c
a	aa	an		-(CH ₂) ₄ -		OMe	Н	Н	Н	0
a	ab	ao		-(CH ₂)9-		OMe	Н	Н	Н	0
a	ac	ар		Н	Н	Ph	Н	Н	Н	0
a	ad	aq		Н	Н	Me	Н	Н	Н	0

^a Yields of isolated products **4** over two steps (based on **1**).

^b Yields in brackets refer to **5a-d** (for structures see Scheme 3).

^c dr=2:3.

heptyl-substituted azaxanthones **4r** and **4s**, respectively. The allyl-substituted azaxanthones **4t** and **4u** were prepared from **2j**.

The reaction of 4-aryl-1,3-bis(trimethylsilyloxy)-1,3-butadienes **2k–n** with 3-cyanochromones **1a,b,e** gave the products **3v–z**, which were transformed into the 3-aryl-1-azaxanthones **4v–z**. 3-Methoxy-

Scheme 3. Mechanism of the formation of 5a-d.

1-azaxanthone 4aa was prepared from 4-methoxy-1,3-bis-(trimethylsilyloxy)-1,3-butadiene 20, which is available from methyl 4-methoxyacetoacetate. The reaction of 4-aryloxy-1,3bis(trimethylsilyloxy)-1,3-butadienes 2p-r with 1a,f,h afforded the condensation products 3ab-ae, which were transformed into the 3-arvloxy-1-azaxanthones 4ab-ae. Starting with 4-thioarvloxy-1.3bis(trimethylsilyloxy)-1,3-butadienes 2s-v, the 3-thioaryloxy-1azaxanthones **4af-ai** were prepared. 1-Azaxanthones **4ai** and 4ak were prepared from 1a and from 2-methyl- and 2-ethyl-1,3bis(trimethylsilyloxy)-1,3-butadienes 2w and 2x, respectively. The reaction of 1a with cyclohexanone-derived 1,3-bis-(trimethylsilyloxy)-1,3-butadienes 2y and 2z gave 3al and 3am, which were transformed into the tetracyclic azaxanthones 4al and 4am, respectively. The employment of 7- and 12-membered cyclic 1,3-bis(trimethylsilyloxy)-1,3-butadienes 2aa and 2ab proved to be unsuccessful. The reaction of 3-cyanochromones with 1,3-diketonederived 1,3-bis(silyl enol ethers), such as 1-phenyl-1,3-bis-(trimethylsilyloxy)-1,3-butadiene (2ac) or 2,4-bis(trimethylsilyloxy)-1,3-pentadiene (2ad), resulted in the formation of complex mixtures

The structures of all products were proved by spectroscopic methods. The structure of **4t** was independently confirmed by X-ray crystal structure analysis (Fig. 1).¹¹

The overall yields of 1-azaxanthones **4a–am** are, in most cases, only moderate. However, it has to be taken into account that the yields refer to *two* steps. In fact, a 50% overall yield is obtained when each individual step proceeds in ca. 70% yield. The moderate yields can be explained by the fact that, for the first step, the conversion is often not complete. However, the yields could not be increased by employment of an excess of the 1,3-bis-(trimethylsilyloxy)-1,3-butadiene or by longer reaction times.

The yields depend on the type of 1,3-bis(trimethylsilyloxy)-1,3butadiene and 3-cyanaochromone employed. The synthesis of 3-alkyl-1-azachromones from parent 3-cyanochromone is problematic, due to the competing formation of dibenzo[*b*,*d*]pyran-6ones, which might be related to the steric influence of the alkyl group. In contrast, the synthesis of 3-alkyl-1-azachromones derived from substituted 3-cyanochromones proved to be possible. Relatively good yields are observed for 1-azaxanthones **4v**-**x** prepared from the phenyl- and 4-chlorophenyl-substituted dienes **2km**. The yields dropped for products **4y**,**z**, which were prepared from diene **2n** (containing the sterically more demanding 2-methoxyphenyl group). The yields of 1-azaxanthones **4ab-ai**, containing an

Figure 1. ORTEP plot of 4t (50% probability level).

aryloxy- or thioaryloxy-substituent, are again relatively good. These results can be explained by the assumption that, despite their steric effect, all these substituents exert an advantageous electronic effect in the first step (the addition of the diene onto the pyrylium salt) or in the second step (formation of intermediate **B** in Scheme 1). The yields of tetracyclic products **4al** and **4am** are rather low and the synthesis of analogues containing larger annulated rings was not possible at all. This might be explained by steric effects. The failure of the synthesis of **3ap** and **3aq** (and, thus, of the corresponding 1-azaxanthones) can be explained by the generally lower reactivity of 1,3-diketone- compared to β -ketoester-derived 1,3-bis-(trimethylsilyloxy)-1,3-butadienes.

In conclusion, a variety of 1-azaxanthones were prepared by TMSOTf-mediated condensation of 1,3-bis(trimethylsilyloxy)-1,3-butadienes with 3-cyanochromones and subsequent basemediated domino 'retro-Michael/lactonization/aldol' reaction. Noteworthy, the syntheses can be carried out under mild conditions and the reactions proceed in acceptable yields with very good regio- and chemoselectivity. The products are not readily available by other methods.

3. Experimental section

3.1. General comments

All solvents were dried by standard methods and all reactions were carried out under an inert atmosphere. For ¹H and ¹³C NMR spectra the deuterated solvents indicated were used. Mass spectrometric data (MS) were obtained by electron ionization (EI, 70 eV), chemical ionization (CI, H_2O) or electrospray ionization (ESI). For preparative scale chromatography, silica gel (60–200 mesh) was used. Melting points are uncorrected.

3.2. General procedure for the synthesis of azaxanthones 4a–am and dibenzo[*b*,*d*]pyran-6-ones 5a–d

To neat 3-cyanochromone 1 (1.0 equiv) was added Me₃SiOTf (1.3 equiv) and CH₂Cl₂ (1 mL) at 20 °C. After stirring for 1 h, CH₂Cl₂ and 1,3-bis(trimethylsilyloxy)-1,3-butadiene 2 (1.3 equiv) were added at 0 °C. The mixture was stirred for 12 h at 20 °C and subsequently poured into hydrochloric acid (10%). The organic and the aqueous layer were separated and the latter was extracted with CH₂Cl₂ (3×100 mL). The combined organic layers were washed with water, dried (Na₂SO₄), filtered and the filtrate was concentrated in vacuo. The residue was filtered through a pad of silica gel (EtOAc/hexane=5:1) to give crude **3a-am**. To an ethanol solution (10 mL) of **3a-am** was added NEt₃ (2.0 equiv) and the solution was stirred for 12 h at 20 °C. To the solution were subsequently added an aqueous solution of hydrochloric acid (1 M) and ether (50 mL). The organic and the aqueous layer were separated and the latter was extracted with ether (3×100 mL). The combined organic layers were washed with water, dried (Na₂SO₄), filtered and the filtrate was concentrated in vacuo. The residue was purified by column chromatography (silica gel, EtOAc/hexane).

3.2.1. Methyl 2-(4-azaxanthon-3-yl)acetate (4a)

Starting with 3-cyanochromone (**1a**) (300 mg, 1.75 mmol), Me₃SiOTf (0.41 mL, 2.28 mmol), **2a** (593 mg, 2.28 mmol), CH₂Cl₂ (15 mL), methanol (20 mL) and triethylamine (885 mg, 1.21 mL, 8.75 mmol), **4a** was isolated as a yellow solid (193 mg, 41%), mp=138 °C. ¹H NMR (300 MHz, CDCl₃): δ =3.77 (s, 3H, OCH₃), 4.01 (s, 2H, CH₂), 7.44 (m, 2H, Ar), 7.61 (d, ³*J*=8.4 Hz, 1H, Ar), 7.79 (m, 1H, Ar), 8.31 (dd, ³*J*=7.9 Hz, ⁴*J*=1.6 Hz, 1H, Ar), 8.69 (d, ³*J*=7.9 Hz, 1H, Ar). ¹³C NMR (DEPT, 75.5 MHz, CDCl₃): δ =34.9 (CH₂), 52.5 (OCH₃), 115.4 (C), 118.5, 121.5 (CH), 121.7 (C), 124.8, 126.7, 135.7, 138.1 (CH), 155.7, 159.9 (C), 160.0 (C), 169.8 (C=O, ester), 177.4 (C=O, ketone).

IR (KBr, cm⁻¹): $\tilde{\nu}$ =3438 (m), 2955 (m), 1739 (s), 1662 (s), 1645 (s), 1553 (m), 1463 (s), 1436 (m), 1401 (s), 1345 (m), 1274 (m), 1202 (s), 1164 (s), 1106 (s), 987 (w), 778 (m), 467 (w). UV–vis (CH₃CN, nm): λ_{max} : 332, 285, 264. Fluorescence (CH₃CN, nm): $F\lambda_{max}$ (λ_{Ex}): 420 (352). MS (EI, 70 eV): m/z (%)=269 (M⁺, 100), 238 (16), 225 (21), 211 (68), 182 (42), 127 (11), 59 (13). HRMS (FT-ICR) calcd for C₁₅H₁₂NO₄ ([M+1]⁺): 270.07608; found: 270.07605.

3.2.2. Ethyl 2-(4-azaxanthon-3-yl)acetate (4b)

Starting with 3-cyanochromone (1a) (300 mg, 1.75 mmol), Me₃SiOTf (506 mg, 0.41 mL, 2.28 mmol), 2b (626 mg, 2.28 mmol), CH₂Cl₂ (15 mL), EtOH (20 mL) and triethylamine (891 mg, 1.22 mL, 8.77 mmol), 4b was isolated as a yellow solid (229 mg, 46%), mp=127 °C. ¹H NMR (300 MHz, CDCl₃): δ =1.29 (t, ³J=7.0 Hz, 3H, CH₃), 3.99 (s, 2H, CH₂), 4.23 (q, ³*J*=7.0 Hz, 2H, OCH₂CH₃), 7.44 (m, 2H, Ar), 7.62 (d, ³*J*=8.3 Hz, 1H, Ar), 7.79 (m, 1H, Ar), 8.31 (dd, ³*J*=7.9 Hz, ⁴*J*=1.7 Hz, 1H, Ar), 8.69 (d, ³*J*=7.9 Hz, 1H, Ar). ¹³C NMR (DEPT, 75.5 MHz, CDCl₃): *b*=14.2 (CH₃), 44.2 (CH₂), 61.5 (OCH₂), 115.3 (C), 118.5, 121.5 (CH), 121.7 (C), 124.7, 126.7, 135.6, 137.9 (CH), 155.7, 159.9, 160.2 (C), 169.3 (C=O, ester), 177.34 (C=O, ketone). IR (KBr, cm⁻¹): $\tilde{\nu}$ =2985 (m), 2928 (m), 1728 (s), 1669 (s), 1602 (s), 1564 (s), 1472 (s), 1406 (s), 1372 (m), 1323 (m), 1282 (s), 1191 (s), 1207 (s), 1104 (s), 1024 (m), 767 (s), 750 (m). UV-vis (CH₃CN, nm): λ_{max} (lg ε): 236 (4.36), 285 (4.20), 331 (3.92). MS (EI, 70 eV): m/z (%)=283 (M⁺, 85), 238 (16), 212 (12), 211 ([M-CO₂, H₂C=CH₂]⁺ 100), 182 (10), 127 (5). HRMS (EI, 70 eV) calcd for C₁₆H₁₃NO₄ ([M]⁺): 283.0845; found: 283.0845±2 ppm.

3.2.3. Isopropyl 2-(4-azaxanthon-3-yl)acetate (4c)

Starting with 3-cvanochromone (1a) (130 mg, 0.76 mmol). Me₃SiOTf (219 mg, 0.18 mL, 0.98 mmol), 2c (285 mg, 0.98 mmol), CH₂Cl₂ (10 mL), EtOH (20 mL) and triethylamine (506 mg, 0.69 mL, 5.00 mmol), **4c** was isolated as a yellow solid (76 mg, 42%), mp=148 °C. ¹H NMR (300 MHz, DMSO- d_6): δ =1.22 (d, ³J=6.3 Hz, 6H, CH₃), 4.02 (s, 2H, CH₂), 4.96 (sept, ³*J*=6.3 Hz, 1H, OCH(CH₃)₂), 7.55 (m, 2H, Ar), 7.73 (dd, ³*J*=8.6 Hz, ⁴*J*=1.1 Hz, 1H, Ar), 7.90 (m, 1H, Ar), 8.15 (dd, ³*J*=8.0 Hz, ⁴*J*=1.6 Hz, 1H, Ar), 8.58 (d, ³*J*=7.9 Hz, 1H, Ar). ¹³C NMR (DEPT, 75.5 MHz, DMSO- d_6): $\delta = 21.5$ (CH₃), 43.5 (CH₂), 68.2 (OCH(CH₃)₂), 114.7 (C), 118.4 (CH), 121.1 (C), 122.1, 124.9, 126.0, 136.0, 137.3 (CH), 155.1, 159.2, 160.6 (C), 168.9 (C=O, ester), 176.57 (C=O, ketone). IR (KBr, cm⁻¹): $\tilde{\nu}$ =3436 (m), 2984 (m), 2962 (m), 1722 (s), 1672 (s), 1615 (s), 1583 (m), 1563 (s), 1465 (s), 1400 (s), 1323 (m), 1206 (s), 1109 (s), 954 (w), 766 (s), 749 (m). UV-vis (CH₃CN, nm): λ_{max} (lg ε): 332 (3.95), 285 (4.22), 227 (4.46). MS (EI, 70 eV): *m*/*z* (%)=297 (M⁺, 75), 238 ([M–OCH(CH₃)₂]⁺, 100), 182 (25), 155 (5), 127 (7), 43 ([CH(CH₃)₂]⁺, 40). Anal. Calcd (%) for C₁₇H₁₅NO₄: C, 68.68; H, 5.09; N, 4.71. Found: C, 68.60; H, 5.30; N, 4.58.

3.2.4. Ethyl 2-(4-aza-8-methylxanthon-3-yl)acetate (4d)

Starting with 3-cyano-6-methylchromone (1b) (152 mg, 0.82 mmol), Me₃SiOTf (238 mg, 0.19 mL, 1.07 mmol), 2a (294 mg, 1.07 mmol), CH₂Cl₂ (16 mL), EtOH (20 mL) and triethylamine (536 mg, 0.73 mL, 5.30 mmol), 4d was isolated as a yellow solid (97 mg, 40%), mp=128 °C. ¹H NMR (300 MHz, DMSO- d_6): δ =1.21 (t, ³*J*=7.1 Hz, 3H, OCH₂CH₃), 2.52 (s, 3H, CH₃), 4.04 (s, 2H, CH₂), 4.14 (q, ${}^{3}J$ =7.1 Hz, 2H, OCH₂CH₃), 7.57 (d, ${}^{3}J$ =7.9 Hz, 1H, Ar), 7.63 (d, ${}^{3}J$ =8.5 Hz, 1H, Ar), 7.74 (dd, ${}^{3}J$ =8.5 Hz, ${}^{4}J$ =2.5 Hz, 1H, Ar), 7.96 (d, ${}^{4}J$ =1.5 Hz, 1H, Ar), 8.61 (d, ${}^{3}J$ =7.9 Hz, 1H, Ar). ${}^{13}C$ NMR (APT, 75.5 MHz, DMSO- d_6): $\delta = 14.1$ (OCH₂CH₃), 20.4 (CH₃), 43.3 (CH₂), 60.8 (OCH₂), 114.7 (C), 118.3 (CH), 120.8 (C), 122.1, 125.3 (CH), 134.5 (C), 137.1, 137.5 (CH), 153.4, 159.3, 160.5 (C), 169.5 (C=O, ester), 176.58 (C=O, ketone). IR (KBr, cm⁻¹): $\tilde{\nu}$ =3439 (m), 2979 (s), 2935 (s), 1727 (s), 1670 (s), 1616 (s), 1587 (s), 1490 (s), 1432 (s), 1394 (s), 1371 (s), 1340 (s), 1305 (s), 1278 (s), 1203 (s), 1173 (s), 1144 (m), 1108 (m), 1028 (s), 998 (w), 882 (w), 814 (m), 783 (m). UV-vis (CH₃CN, nm): λ_{max} (lg ε): 334 (3.86), 290 (4.23), 240 (4.39), 229 (4.46). MS (EI, 70 eV): *m*/*z* (%)=297 (M⁺, 84), 252 ([M–OCH₂CH₃]⁺, 14), 225 ([M–CO₂CH₂CH₃]⁺, 100), 196 (18). Anal. Calcd (%) for $C_{17}H_{15}NO_4$ (297): C, 68.68; H, 5.09; N, 4.71. Found: C, 68.93; H, 5.91; N, 4.48.

3.2.5. Isopropyl 2-(4-aza-8-ethylxanthon-3-yl)acetate (4e)

Starting with 3-cyano-6-ethylchromone (1c) (141 mg, 0.71 mmol), Me₃SiOTf (205 mg, 0.17 mL, 0.92 mmol), 2c (266 mg, 0.92 mmol), CH₂Cl₂ (20 mL), EtOH (20 mL) and triethylamine (465 mg, 0.64 mL, 4.60 mmol), 4e was isolated as a yellow solid (58 mg, 31%), mp=127 °C. ¹H NMR (300 MHz, CDCl₃): δ =1.29 (m, 9H, CH₂CH₃, OCH(CH₃)₂), 2.79 (q, ³J=7.6 Hz, 2H, CH₂CH₃), 3.95 (s, 2H, CH₂CH₃, OCH(CH₃)₂), 2.75 (q, J=7.012, 2H, CH₂CH₃), 5.35 (s, 2H, CH₂), 5.09 (sept, ${}^{3}J$ =6.3 Hz, 1H, OCH(CH₃)₂), 7.43 (d, ${}^{3}J$ =7.9 Hz, 1H, Ar), 7.53 (d, ${}^{3}J$ =8.6 Hz, 1H, Ar), 7.62 (dd, ${}^{3}J$ =8.6 Hz, ${}^{4}J$ =2.2 Hz, 1H, Ar), 8.69 (d, ${}^{3}J$ =7.9 Hz, 1H, Ar). ${}^{13}C$ NMR (DEPT, 75.5 MHz, CDCl₃): δ =15.5 (CH₂CH₃), 21.8 (OCH(CH₃)₂), 28.3 (CH₂CH₃), 44.4 (CH₂), 69.1 (OCH(CH₃)₂), 115.2 (C), 118.4 (CH), 121.3, 121.4 (C), 124.8, 135.8, 137.9, 141.0 (CH), 154.0, 159.1, 160.2 (C), 168.9 (C=O, ester), 177.5 (C=O, ketone). IR (KBr, cm⁻¹): $\tilde{\nu}$ =3436 (m), 2977 (m), 2934 (m), 1724 (s), 1669 (s), 1612 (s), 1586 (s), 1563 (m), 1491 (m), 1444 (s), 1398 (s), 1307 (m), 1282 (m), 1208 (m), 1180 (s), 1107 (s), 780 (m). UV-vis (CH₃CN, nm): λ_{max} (lg ε): 335 (3.84), 290 (4.26), 240 (4.42), 229 (4.48). MS (EI, 70 eV): m/z (%)=326 (M⁺, 67), 268 ([M-CH(CH₃)₂]⁺, 15), 239 ([M-CO₂CH(CH₃)₂)]⁺, 100), 211 (16), 196 (7), 133 (8), 43 ([CH(CH₃)₂)]⁺, 95). HRMS (FT-ICR) calcd for C₁₉H₂₀NO₄ ([M+1]⁺): 326.13868; found: 326.13826.

3.2.6. Ethyl 2-(4-aza-8-isopropylxanthon-3-yl)acetate (4f)

Starting with 3-cyano-6-isopropylchromone 1d (145 mg, 0.68 mmol), Me₃SiOTf (196 mg, 0.16 mL, 0.88 mmol), 2a (242 mg, 0.88 mmol), CH₂Cl₂ (20 mL), EtOH (25 mL) and triethylamine (526 mg, 0.72 mL, 5.20 mmol), 4f was isolated as a yellow solid (91 mg, 41%), mp=140 °C. ¹H NMR (300 MHz, CDCl₃): δ =1.28 (m, 9H, CH₃), 3.12 (sept, 1H, CH(CH₃)₂), 3.98 (s, 2H, CH₂), 4.22 (q, ³*I*=7.2 Hz, OCH₂CH₃), 7.45 (d, ³*J*=7.9 Hz, 1H, Ar), 7.53 (d, ³*J*=8.6 Hz, 1H, Ar), 7.66 (dd, ³*J*=8.6 Hz, ⁴*J*=2.3 Hz, 1H, Ar), 8.15 (d, ⁴*J*=2.3 Hz, 1H, Ar), 8.70 (d, ³*J*=7.9 Hz, 1H, Ar). ¹³C NMR (DEPT, 75.5 MHz, CDCl₃): δ =14.2 (OCH₂CH₃), 23.9 (CH(CH₃)₂), 33.7 (CH(CH₃)₂), 44.2 (CH₂), 61.5 (OCH₂CH₃), 115.3 (C), 118.4, 121.3 (CH), 121.4 (C), 123.5, 134.6, 138.0 (CH), 145.6, 154.1, 159.9, 160.0 (C), 169.4 (C=O, ester), 177.6 (C=O, ketone). IR (KBr, cm⁻¹): $\tilde{\nu}$ =3428 (m), 3340 (m), 3190 (m), 2962 (m), 2933 (m), 1724 (m), 1666 (s), 1623 (s), 1616 (s), 1536 (s), 1459 (s), 1329 (m), 1266 (m), 1227 (m), 1156 (m), 1095 (m), 1034 (m), 808 (w). UV-vis (CH₃CN, nm): λ_{max} (lg ε): 334 (3.79), 291 (4.08), 280 (3.99), 248 (4.39). GC-MS (EI, 70 eV): m/z (%)=325 (M, 46), 310 (100), 267 (11), 238 (23). HRMS (EI, 70 eV) calcd for C₁₉H₁₉NO₄: 325.1314; found: 325.1314±2 ppm.

3.2.7. Ethyl 2-(4-aza-8-chloroxanthon-3-yl)acetate (4g)

Starting with 6-chloro-3-cyanochromone (1e) (148 mg, 0.72 mmol), Me₃SiOTf (209 mg, 0.17 mL, 0.94 mmol), 2a (258 mg, 0.94 mmol), CH₂Cl₂ (16 mL), EtOH (20 mL) and triethylamine (476 mg, 0.65 mL, 4.70 mmol), 4g was isolated as a yellow solid (85 mg, 37%), mp=118 °C. ¹H NMR (300 MHz, DMSO- d_6): δ =1.21 (t, ³*J*=7.2 Hz, 3H, OCH₂CH₃), 4.05 (s, 2H, CH₂), 4.13 (q, ³*J*=7.2 Hz, 2H, OCH₂CH₃), 7.61 (d, ³J=7.9 Hz, 1H, Ar), 7.80 (d, ³J=8.9 Hz, 1H, Ar), 7.96 (dd, ³*J*=8.9 Hz, ⁴*J*=2.6 Hz, 1H, Ar), 8.10 (d, ⁴*J*=2.6 Hz, 1H, Ar), 8.62 (d, 3 J=6.9 Hz, 1H, Ar). 13 C NMR (APT, 75.5 MHz, DMSO- d_{6}): δ =13.9 (CH₃), 43.2 (CH₂), 60.6 (OCH₂), 114.4 (C), 120.8 (CH), 122.2 (C), 122.3, 124.7 (CH), 129.0 (C), 135.5, 137.3 (CH), 153.7, 160. 0, 160.8 (C), 169.1 (C=O, ester), 175.6 (C=O, ketone). IR (KBr, cm^{-1}): $\tilde{\nu}$ =2978 (m), 2931 (m), 1727 (s), 1673 (s), 1610 (s), 1559 (m), 1472 (s), 1434 (s), 1395 (s), 1338 (m), 1258 (s), 1210 (s), 1186 (s), 1108 (m), 1027 (m), 839 (w), 784 (w). UV-vis (CH₃CN, nm): λ_{max} (lg ε): 334 (3.85), 292 (4.11), 230 (4.45). MS (EI, 70 eV): *m*/*z* (%)=319 (M⁺, ³⁷Cl, 21), 317 (M⁺, ³⁵Cl, 67), 272 (19), 245 (100), 216 (21), 189 (5), 153 (7), 126 (10), 64 (12).

3.2.8. Ethyl 2-(4-aza-6,8-dichloroxanthon-3-yl)acetate (4h)

Starting with 6,8-dichloro-3-cyanochromone (1f) (162 mg, 0.67 mmol), Me₃SiOTf (194 mg, 0.16 mL, 0.87 mmol), 2a (239 mg, 0.87 mmol), CH₂Cl₂ (15 mL), EtOH (20 mL) and triethylamine (365 mg, 0.50 mL, 3.60 mmol), 4h was isolated as a yellow solid (113 mg, 48%), mp=155 °C. ¹H NMR (300 MHz, DMSO- d_6): δ =1.31 (t, ³*J*=7.1 Hz, 3H, OCH₂CH₃), 3.74 (s, 2H, CH₂), 4.30 (q, ³*J*=7.1 Hz, 2H, CH_2CH_3 , 6.92 (dd, ³*J*=6.9 Hz, ⁴*J*=2.2 Hz, 1H, Ar), 7.64 (dd, ³*J*=6.9 Hz, ⁴*J*=2.1 Hz, 1H, Ar), 8.06 (d, ³*J*=6.9 Hz, ⁴*J*=2.6 Hz, 1H, Ar), 8.06 (d, {Ar}), 8.06 (d, {Ar}), 8.06 (d 4 J=2.6 Hz, 1H, Ar). 13 C NMR (DEPT, 75.5 MHz, DMSO-*d*₆): δ =13.9 (CH₃), 55.2 (CH₂), 62.3 (OCH₂), 113.9, 121.9 (CH), 122.1 (C), 123.3 (CH), 124.8, 129.5 (C), 133.3 (CH), 147.8, 155.1, 156.2, 160.8 (C), 164.9 (C=0, ester), 173.4 (C=0, ketone). IR (KBr, cm⁻¹): $\tilde{\nu}$ =3423 (m), 3352 (s), 3260 (m), 3134 (m), 1724 (s), 1675 (s), 1613 (s), 1572 (s), 1543 (s), 1512 (s), 1459 (s), 1387 (m), 1323 (m), 1293 (s), 1243 (s), 1176 (s), 1021 (m), 858 (m), 777 (m), 707 (m). UV-vis (CH₃CN, nm): λ_{max} (lg ε): 431 (2.85), 271 (4.19), 221 (3.80). MS (EI, 70 eV): m/z(%)=356 ([M]⁺, [2×³⁷Cl], 3), 354 ([M]⁺, [³⁷Cl], [³⁵Cl], 11), 352 ([M]⁺, [2×³⁵Cl], 22), 307 (12), 279 (16), 258 (22), 224 (74), 189 (77), 149 (100), 122 (83), 97 (11), 69 (14).

3.2.9. Ethyl 2-(4-aza-8-bromoxanthon-3-yl)acetate (4i)

Starting with 6-bromo-3-cyanochromone (1g) (170 mg, 0.68 mmol), Me₃SiOTf (196 mg, 0.16 mL, 0.88 mmol), 2a (243 mg, 0.88 mmol), CH₂Cl₂ (15 mL), EtOH (20 mL) and triethylamine (455 mg, 0.62 mL, 4.50 mmol), 4i was isolated as a yellow solid (84 mg, 34%), mp=127 °C. ¹H NMR (300 MHz, CDCl₃): δ =1.26 (t, ³*J*=7.1 Hz, 3H, OCH₂CH₃), 3.98 (s, 2H, CH₂), 4.22 (q, ³*J*=7.1 Hz, 2H, OCH₂CH₃), 7.44 (d, ³*J*=7.9 Hz, 1H, Ar), 7.45 (d, ³*J*=8.5 Hz, 1H, Ar), 7.57 (dd, ³*J*=8.5 Hz, ⁴*J*=2.2 Hz, 1H, Ar), 8.08 (d, ⁴*J*=2.2 Hz, 1H, Ar), 8.67 (d, 3 *I*=7.9 Hz, 1H, Ar). ¹³C NMR (75.5 MHz, CDCl₃): δ =14.2 (CH₃), 20.9, 44.1 (CH₂), 61.5 (OCH₂), 115.3 (C), 118.3 (CH), 121.3 (C), 121.3, 126.0 (CH), 134.7 (C), 136.9, 137.9 (CH), 153.9, 159.9, 160.0 (C), 169.4 (C=0, ester), 177.44 (C=O, ketone). IR (KBr, cm⁻¹): $\tilde{\nu}$ =2981 (m), 2934 (m), 1728 (s), 1669 (s), 1614 (s), 1409 (m), 1433 (s), 1397 (s), 1339 (m), 1305 (m), 1278 (m), 1206 (s), 1174 (s), 1137 (m), 1029 (m), 816 (m), 782 (m). UV-vis (CH₃CN, nm): λ_{max} (lg ε): 335 (3.89), 290 (4.28), 240 (4.44), 228 (4.51). MS (EI, 70 eV): *m/z* (%)=363 (M⁺, ⁸¹Br, 2), 361 (M⁺, ⁷⁹Br, 3), 252/250 (10/12), 225 (100), 196 (34), 148 (23), 86 (32).

3.2.10. Isopropyl 2-(4-aza-8-bromoxanthon-3-yl)acetate (4j)

Starting with 6-bromo-3-cyanochromone (1g) (162 mg, 0.65 mmol), Me₃SiOTf (187 mg, 0.15 mL, 0.84 mmol), 2c (242 mg, 0.84 mmol), CH₂Cl₂ (15 mL), EtOH (20 mL) and triethylamine (425 mg, 0.58 mL, 4.20 mmol), 4j was isolated as a yellow solid (66 mg, 32%), mp=128 °C. ¹H NMR (300 MHz, CDCl₃): δ =1.35 (d, ³*J*=6.3 Hz, 6H, CH(CH₃)₂), 3.96 (s, 2H, CH₂), 5.09 (sept, ³*J*=6.3 Hz, 1H, CH(CH₃)₂), 7.48 (m, 2H, Ar), 7.83 (dd, ³J=8.9 Hz, ⁴J=2.6 Hz, 1H, Ar), 8.39 (d, ⁴*J*=2.4 Hz, 1H, Ar), 8.65 (d, ³*J*=7.9 Hz, 1H, Ar). ¹³C NMR (DEPT, 75.5 MHz, CDCl₃): δ =21.8 (OCH(CH₃)₂), 44.4 (CH₂), 69.2 (OCH(CH₃)₂), 115.0, 117.9 (C), 120.4, 121.9 (CH), 122.9 (C), 129.2, 137.9, 138.4 (CH), 154.4, 159.4, 160.8 (C), 168.8 (C=0, ester), 176.1 (C=0, ketone). IR (KBr, cm⁻¹): $\tilde{\nu}$ =2931 (m), 2249 (m), 1650 (m), 1492 (s), 1458(s), 1423(m), 1403(s), 752(s). MS (EI, 70 eV): $m/z(\%) = 377(M^+, 1458)$ ⁸¹Br, 33), 375 (M⁺, ⁷⁹Br, 34), 319/317 ([M–OⁱPr]⁺, 6/6), 292/290 $([M-CO_2^{1}Pr]^+, 34/36), 266(33), 251(54), 182(7), 121(15), 86(9), 43$ (ⁱPr⁺, 100). HRMS (EI) calcd for C₁₇H₁₄BrNO₄ (M⁺, ⁷⁹Br): 375.0106; found: 375.0106±2 ppm.

3.2.11. Methyl 2-(4-aza-2-methylxanthon-3-yl)acetate (**4k**) and 10-cyano-7-hydroxy-8-methyldibenzo[b,d]pyran-6-one (**5a**)

Starting with **1a** (171 mg, 1.0 mmol), Me₃SiOTf (289 mg, 1.3 mmol) and **2d** (357 mg, 1.3 mmol), **5a** (85 mg, 34%) was isolated as a yellow solid, mp=238 °C. The synthesis of **5a** has been previously reported.^{10 1}H NMR (300 MHz, CDCl₃): δ =2.38 (s, 3H, CH₃), 7.44 (m, 2H, Ar), 7.61 (m, 1H, Ar), 7.87 (s, 1H, Ar), 9.18 (dd, ³*J*=2.3 Hz, ⁴*J*=1.4 Hz,

1H, Ar), 12.66 (s, 1H, OH). ¹³C NMR (DEPT, 75.5 MHz, CDCl₃): δ=15.5 (CH₃), 96.1 (C-CN), 106.2 (CN), 116.7 (C), 117.9 (CH), 119.5 (C), 125.0, 125.7 (CH), 127.5 (C), 132.1 (CH), 135.3 (C), 143.8 (CH), 150.3, 164.7, 165.0 (C). IR (KBr, cm⁻¹): $\tilde{\nu}$ =3420 (w), 2970 (w), 2830 (w), 2212 (s), 1684 (s), 1600 (s), 1459 (s), 1412 (m), 1388 (m), 1326 (m), 1262 (s), 1219 (m), 1170 (s), 1147 (s), 1112 (s), 811 (m), 764 (s), 666 (m). UV-vis (CH_3CN, nm) : $\lambda_{max}(\lg \varepsilon)$: 350 (3.81), 338 (3.34), 311 (4.02), 299 (3.95), 288 (3.96), 254 (4.48), 206 (4.52). Fluorescence (CH₃CN, nm): *Fλ*_{max} (λ_{Ex}) : 489 (345). MS (EI, 70 eV): m/z (%)=251 (M⁺, 100), 222 (18), 194 (14), 177 (8), 140 (10), 71 (6). Anal. Calcd (%) for C₁₅H₉NO₃ (250.7): C, 71.98; H, 3.61; N, 5.60. Found: C, 71.71; H, 4.20; N, 5.70. In a second fraction, **4k** was detected, which could not be isolated in pure form. Signals of **4k** in the mixture with **5a**: ¹H NMR (300 MHz, CDCl₃): $\delta = 2.47$ (s, 3H, CH₃), 3.76 (s, 3H, OMe), 3.82 (s, 2H, CH₂), 7.38 (m, 2H, Ar), 7.76 (m, 2H, Ar), 8.47 (s, 1H, Ar). MS (EI, 70 eV): m/z (%)=283 (M⁺, 72), 268 (38), 251 (223, 100), 224 (21), 197 (14), 121 (12).

3.2.12. Ethyl 2-(7-chloro-3-methyl-5-oxo-5H-chromeno[2,3-b]-pyrid-2-yl)acetate (**4**I)

Starting with 6-chlorocyanochromone (**1e**) (150 mg, 0.60 mmol), **2e** (288 mg, 0.78 mmol), Me₃SiOTf (0.14 mL, 0.78 mmol) and NEt₃ (0.16 mL, 1.20 mmol), **4I** was isolated as a colourless solid (98 mg, 41%), mp=190 °C. ¹H NMR (250 MHz, CDCl₃): δ =1.27 (t, 3H, ³*J*=7.1 Hz, CH₃), 2.46 (s, 3H, CH₃), 3.99 (s, 2H, CH₂), 4.28 (q, 2H, ³*J*= 6.9 Hz, OCH₂CH₃), 7.55 (d, 1H, ³*J*=8.9 Hz, ArH), 7.71 (dd, 1H, ³*J*=7.91 Hz, ⁴*J*=2.5 Hz, ArH), 8.26 (d, 1H, ⁴*J*=2.5 Hz, ArH), 8.46 (s, 1H, ArH). ¹³C NMR (62 MHz, CDCl₃): δ =14.1, 18.1 (CH₃), 42.3, 61.4 (CH₂), 115.6 (C), 120.2 (CH), 122.5 (2C, C), 125.9 (CH), 130.0 (C), 135.5, 138.1 (CH), (C), 154.0, 157.1, 159.5 (C), 169.0, 176.5 (C=O). IR (neat, cm⁻¹): $\tilde{\nu}$ =3092 (w), 2977 (m), 2921 (w), 1724 (s), 1667 (s), 1603 (m), 1439 (s), 1270 (s), 1180 (s), 843 (s), 788 (m). GC-MS (EI, 70 eV): *m/z* (%)=333 (M⁺, ³⁷Cl, 27), 331 (M⁺, ³⁵Cl, 87), 285 (70), 257 (100), 230 (29), 194 (4), 126 (15), 63 (10). HRMS (ESI) calcd for C₁₈H₁₆NO₄Cl (M⁺⁺, ³⁵Cl): 331.060408.

3.2.13. Ethyl 2-(4-aza-2-ethylxanthon-3-yl)acetate (**4m**) and 10cyano-8-ethyl-7-hydroxydibenzo[b,d]pyran-6-one (**5b**)

Starting with **1a** (171 mg, 1.0 mmol), Me₃SiOTf (289 mg, 1.3 mmol) and **1f** (393 mg, 1.3 mmol), **4m** (53 mg, 17%) was isolated as a yellow solid and **5b** was isolated as a colourless solid (90 mg, 34%). The synthesis of **5b** has been previously reported.¹⁰

Compound **4m**: mp=125 °C. ¹H NMR (300 MHz, CDCl₃): δ =1.25 (t, ³J=8.9 Hz, 3H, CH₂CH₃), 1.33 (t, ³J=7.5 Hz, 3H, OCH₂CH₃), 2.80 (q, ³J=8.9 Hz, 2H, CH₂CH₃), 4.02 (s, 2H, CH₂), 4.21 (q, ³J=7.5 Hz, 2H, OCH₂CH₃), 7.42 (m, 1H, Ar), 7.61 (dd, ³J=8.8 Hz, ⁴J=0.6 Hz, 1H, Ar), 7.76 (m, 1H, Ar), 8.32 (dd, ³J=8.0 Hz, ⁴J=1.7 Hz, 1H, Ar), 8.53 (s, 1H, Ar). ¹³C NMR (DEPT, 75.5 MHz, CDCl₃): δ =14.0 (OCH₂CH₃), 14.2 (CH₂CH₃), 24.5 (CH₂CH₃), 41.8 (CH₂), 61.4 (OCH₂CH₃), 115.6 (C), 118.5 (CH), 121.6 (C), 124.5, 126.9, 135.4 (CH), 135.9 (C), 136.4 (CH), 155.8, 158.1, 158.6 (C), 169.4 (CO, ester), 177.7 (C=O, ketone). IR (KBr, cm⁻¹): $\tilde{\nu}$ =3390 (m), 3150 (m), 2984 (m), 2932 (m), 1733 (s), 1663 (s), 1612 (s), 1561 (s), 1471 (s), 1424 (s), 1316 (s), 1266 (s), 1229 (m), 1184 (m), 1149 (s), 1119 (s), 1028 (m), 909 (w), 734 (m). UV-vis (CH₃CN, nm): λ_{max} (lg ε): 339 (3.93), 289 (4.09), 229 (4.47). MS (EI, 70 eV): *m/z* (%)=311 (M⁺, 100), 265 (42), 237 (97), 210 (15), 175 (13), 153 (12), 86 (19), 57 (76). HRMS (EI) calcd for C₁₈H₁₇NO₄ (M⁺): 311.1158; found: 311.1158±2 ppm.

Compound **5b**: mp=183 °C. ¹H NMR (300 MHz, CDCl₃): δ =1.30 (t, ³J=7.2 Hz, 3H, CH₂CH₃), 2.78 (q, ³J=7.2 Hz, 2H, CH₂CH₃), 7.45 (m, 2H, Ar), 7.60 (m, 1H, Ar), 7.88 (s, 1H, Ar), 9.19 (dd, ³J=2.3 Hz, ⁴J=1.4 Hz, 1H, Ar), 12.71 (s, 1H, OH). ¹³C NMR (DEPT, 75.5 MHz, CDCl₃): δ =13.0 (CH₃), 22.5 (CH₂), 96.3, 106.3, 116.8 (C), 117.9 (CH), 119.8 (C), 125.1, 125.8, 132.2 (CH), 133.2, 135.3 (C), 142.3 (CH), 150.3, 164.2, 165.2 (C). IR (KBr, cm⁻¹): $\tilde{\nu}$ =3150 (w), 2971 (w), 2939 (w), 2877 (w), 2219 (m), 1675 (s), 1600 (s), 1459 (s), 1440 (m), 1422 (s), 1361 (w), 1338 (m), 1316 (m), 1273 (s), 1250 (m), 1221 (m), 1169 (s), 1155 (m), 1115 (m), 817 (s), 796 (m), 764 (s). UV-vis (CH₃CN, nm): λ_{max} (lg ε): 383 (3.11), 351 (3.78), 338 (3.79), 311 (3.97), 300 (3.92), 289 (3.93), 255 (4.45), 208 (4.44). MS (EI, 70 eV): m/z (%)=265 (M⁺, 64), 251 (94), 211 (3), 58 (7), 32 (23). HRMS (EI) calcd for C₁₆H₁₁NO₃ (M⁺): 265.0739; found: 265.0739±2 ppm.

3.2.14. Ethyl 2-(7-chloro-3-ethyl-5-oxo-5H-chromeno[2,3-b]pyrid-2-yl)acetate (**4n**)

Starting with 6-chlorocyanochromone (1e) (150 mg, 0.60 mmol). 1,3-bis(silyl enol ether) 2f (305 mg, 0.78 mmol), Me₃SiOTf (0.14 mL, 0.78 mmol) and NEt₃ (0.16 mL, 1.20 mmol), 4n was isolated as a highly viscous yellowish oil (150 mg, 46%). ¹H NMR (250 MHz, CDCl₃): δ =1.25 (t, 3H, ³*J*=7.3 Hz, CH₃), 1.33 (t, 3H, ³*J*=7.5 Hz, CH₃), 2.81 (q, 2H, ³J=6.9 Hz, CH₂CH₃), 4.00 (s, 2H, CH₂), 4.20 (q, 2H, ³J=7.1 Hz, OCH₂CH₃), 7.55 (d, 1H, ³J=8.9 Hz, ArH), 7.70 (dd, 1H, ³*J*=7.91 Hz, ⁴*J*=1.5 Hz, ArH), 8.28 (d, 1H, ⁴*J*=2.5 Hz, ArH), 8.51 (s, 1H, ArH). ¹³C NMR (62 MHz, CDCl₃): δ=13.9, 14.1 (CH₃), 29.6, 41.7, 61.4 (CH₂), 115.2 (C), 120.2 (CH), 122.5 (C), 125.9 (CH), 130.0 (C), 135.5 (CH), 136.3 (C), 136.4 (CH), 154.0, 157.2, 159.0 (C), 169.2, 176.5 (C=O). IR $(\text{neat}, \text{cm}^{-1})$: $\tilde{\nu}=2956$ (w), 2921 (m), 2935 (w), 1726 (s), 1699 (s), 1583 (m), 1428 (s), 1180 (s), 1024 (s), 789 (s), 710 (m). GC-MS (EI, 70 eV): m/z (%)=347 (M⁺, ³⁷Cl, 24), 345 (M⁺, ³⁵Cl), 299 (34), 271 (100), 257 (29), 208 (4), 139 (15), 63 (10). HRMS (ESI) calcd for C₁₈H₁₆NO₄Cl (M⁺, ³⁵Cl): 345.0764; found: 345.07626.

3.2.15. Ethyl 2-(3-ethyl-7,8-dimethyl-5-oxo-5H-chromeno[2,3-b]-pyrid-2-yl)acetate (**4o**)

Starting with 6,7-dimethylcyanochromone (**1h**) (150 mg, 0.75 mmol), 1,3-bis(silyl enol ether) **2f** (302 mg, 0.97 mmol), Me₃SiOTf (0.17 mL, 0.97 mmol) and NEt₃ (0.20 mL, 1.5 mmol), **4o** was isolated as a colourless solid (100 mg, 38%), mp=149 °C. ¹H NMR (250 MHz, CDCl₃): δ =1.25 (t, 3H, ³*J*=7.1 Hz, CH₃), 1.34 (t, 3H, ³*J*=7.5 Hz, CH₃), 2.37 (s, 3H, CH₃), 2.42 (s, 3H, CH₃), 2.79 (q, 2H, ³*J*=7.4 Hz, CH₂CH₃), 4.0 (s, 2H, CH₂), 4.21 (q, 2H, ³*J*=7.2 Hz, OCH₂CH₃), 7.34 (s, 1H, ArH), 8.00 (s, 1H, ArH), 8.51 (s, 1H, ArH). ¹³C NMR (62 MHz, CDCl₃): δ =14.0, 14.1, 19.2, 20.6 (CH₃), 24.4, 41.7, 61.3 (CH₂), 115.6 (C), 118.5 (CH), 119.4 (C), 126.2 (CH), 133.7, 135.5 (C), 136.3 (CH), 146.2, 154.2, 157.9, 158.0 (C), 169.4, 177.4 (C=O). IR (neat, cm⁻¹): $\tilde{\nu}$ =2970 (w), 2921 (m), 2856 (w), 1727 (s), 1663 (s), 1607 (m), 1425 (s), 1181 (s), 1158 (s), 1026 (s), 789 (s), 739 (m). GC-MS (EI, 70 eV): *m*/*z* (%)=339 (M⁺, 96), 293 (61), 265 (100), 250 (16), 222 (7), 1194 (15), 91 (10). HRMS (ESI) calcd for C₂₀H₂₁NO₄ [M]⁺: 339.14651; found: 339.14641.

3.2.16. 10-Cyano-7-hydroxy-8-n-propyldibenzo[b,d]pyran-6-one (5c)

Starting with 1a (205 mg, 1.2 mmol), Me₃SiOTf (347 mg, 0.28 mL, 1.56 mmol) and 2g (428 mg, 1.56 mmol), 5c (124 mg, 37%) was isolated as a yellow solid, mp=172 °C. The synthesis of 5c has been previously reported.¹⁰ ¹H NMR (300 MHz, CDCl₃): δ =1.01 (t, ³*I*=7.4 Hz, 3H, CH₃), 1.69 (m, 2H, CH₂CH₃), 2.74 (t, ³*J*=7.3 Hz, 2H, ArCH₂), 7.45 (m, 2H, Ar), 7.61 (m, 1H, Ar), 7.86 (s, 1H, Ar), 9.20 (dd, ³*J*=8.1 Hz, ⁴*J*=1.3 Hz, 1H, Ar), 12.69 (s, 1H, Ar). ¹³C NMR (DEPT. 75.5 MHz, CDCl₃): δ=13.8 (CH₃), 21.9 (CH₂CH₃), 31.2 (ArCH₂), 96.1, 106.2, 116.6 (C), 117.8 (CH), 119.6 (C), 124.9, 125.7 (CH), 131.7 (C), 132.1 (CH), 135.2 (C), 143.1 (CH), 150.2, 164.5, 165.0 (C). IR (KBr, cm^{-1}): $\tilde{\nu}$ =3434 (m), 2961 (m), 2875 (m), 2219 (m), 1678 (s), 1602 (s), 1459 (s), 1416 (s), 1357 (m), 1325 (s), 1270 (s), 1224 (m), 1168 (s), 1115 (m), 814 (m), 791 (w), 761 (m). UV-vis (CH₃CN, nm): λ_{max} (lg ε): 351 (3.83), 339 (3.86), 311 (4.03), 299 (3.96), 289 (3.96), 255 (4.48), 208 (4.47). MS (EI, 70 eV): m/z (%)=279 (M⁺, 43), 264 (12), 250 (100), 222 (4), 206 (2), 164 (4), 139 (5), 77 (50), 43 (4). HRMS (EI) calcd for C₁₇H₁₃NO₃ (M⁺): 279.0895; found: 279.0895±2 ppm.

3.2.17. 8-n-Butyl-10-cyano-7-hydroxydibenzo[b,d]pyran-6-one (**5d**)

Starting with 1a (257 mg, 1.5 mmol), Me₃SiOTf (433 mg, 1.95 mmol) and 2h (645 mg, 1.95 mmol), 5d (185 mg, 42%) was

isolated as a colourless solid, mp=132 °C. The synthesis of **5d** has been previously reported.¹⁰ ¹H NMR (300 MHz, CDCl₃): δ =0.98 (t, ³*J*=7.3 Hz, 3H, CH₃), 1.42 (m, 2H, CH₂), 1.65 (m, 2H, CH₂), 2.74 (t, ³*I*=7.6 Hz, 2H, ArCH₂), 7.39–7.47 (br m, 2H, Ar), 7.60 (m, 1H, Ar), 7.84 (s, 1H, Ar), 9.15 (dd, ³*J*=8.3 Hz, ⁴*J*=1.4 Hz, 1H, Ar), 12.67 (s, 1H, OH). ¹³C NMR (DEPT, 75.5 MHz, CDCl₃): δ =13.9 (CH₃), 22.5, 29.0, 30.9 (CH₂), 96.2, 106.3, 116.7 (C), 117.9 (CH), 119.7 (C), 125.0, 125.7 (CH), 132.0 (C), 132.2 (CH), 135.2 (C), 143.1 (CH), 150.3, 164.5, 165.1 (C). IR (KBr, cm^{-1}): $\tilde{\nu}=3126(w), 2958(w), 2929(w), 2866(w), 2219(m), 1679(s),$ 1602 (s), 1458 (s), 1414 (s), 1352 (m), 1326 (s), 1268 (s), 1213 (m), 1169 (s), 1114 (m), 805 (m), 791 (m), 765 (s), 739 (m), 668 (m). UV-vis (CH₃CN, nm): λ_{max} (lg ε): 351 (3.86), 339 (3.88), 311 (4.04), 299 (3.95), 289 (3.96), 255 (4.50), 207 (4.53). Fluorescence (CH₃CN, nm): $F\lambda_{max}$ (λ_{Ex}): 479 (345). MS (EI, 70 eV): m/z (%)=293 (M⁺, 100), 250 (26), 222 (3), 210 (3), 164 (79), 161 (18), 70 (3). HRMS (EI) calcd for $C_{18}H_{15}NO_3$ (M⁺): 293.1052; found: 293.1052±2 ppm.

3.2.18. Ethyl 2-(3-heptyl-5-oxo-5H-chromeno[2,3-b]pyrid-2-yl)acetate (**4r**)

Starting with 1a (343 mg, 2.0 mmol), 2i (967 mg, 2.61 mmol), Me₃SiOTf (0.47 mL, 2.61 mmol) and NEt₃ (1.4 mL, 10.0 mmol), 4r was isolated as a colourless solid (195 mg, 25%), mp=117 °C. ¹H NMR (250 MHz, CDCl₃): δ =0.86 (t, ³*J*=6.7 Hz, 3H, CH₂CH₃), 1.25 (t, ³*J*=7.2 Hz, 3H, CH₂CH₃), 1.34 (m, 8H, CH₂CH₂C₄H₈CH₃), 1.66 (m, 2H, CH₂CH₂C₅H₁₁), 2.72 (t, ³J=8.0 Hz, 2H, CH₂C₆H₁₃), 3.99 (s, 2H, CH₂COO), 4.19 (q, ³J=7.16 Hz, 2H, OCH₂CH₃), 7.39 (m, 1H, Ar), 7.56 (d, ³*J*=8.5 Hz, 1H, Ar), 7.74 (ddd, ³*J*=8.7 Hz, ⁴*J*=1.7 Hz, 1H, Ar), 8.28 (dd, ³*I*=1.5, 8.0 Hz, 1H, Ar), 8.47 (s, 1H, Ar). ¹³C NMR (250 MHz, CDCl₃): $\delta = 14.0$ (CH₃), 14.1 (CH₃), 22.6, 29.0, 29.3, 30.0, 31.5, 31.7, 41.7 (CH₂), 61.4 (OCH₂CH₃), 115.4 (C), 118.4 (CH), 121.6 (C), 124.4, 126.6 (CH), 134.8 (C), 135.4, 137.1 (CH), 155.7, 158.0, 158.6, 169.4 (C), 177.6 (C=O). IR (KBr, cm⁻¹): $\tilde{\nu}$ =3453 (br, w), 3051 (w), 2976 (m), 2951 (m), 2922 (s), 2849 (m), 1733 (s), 1669 (s), 1613 (s), 1560 (w), 1447 (s), 1428 (s), 1367 (m), 1340 (m), 1320 (m), 1277 (m), 1231 (m), 1205 (m), 1176 (m), 1115 (m), 1035 (m), 961 (w), 943 (w), 875 (w), 764 (m). MS (EI, 70 eV): m/z (%)=381 (M⁺, 12), 294 (100), 336 (8), 310 (79), 264 (29), 236 (84), 224 (61). HRMS (EI) calcd for C₂₃H₂₇NO₄ (M⁺): 381.19346; found: 381.19345.

3.2.19. Ethyl 2-(7-chloro-3-heptyl-5-oxo-5H-chromeno[2,3-b]pyrid-2-yl)acetate (**4s**)

Starting with 3-chloro-3-cyanochromone 1e (150 mg, 0.7 mmol), **2i** (340 mg, 0.91 mmol), Me₃SiOTf (0.21 mL, 0.91 mmol) and NEt₃ (0.45 mL, 3.5 mmol), 4s was isolated as a colourless solid (110 mg, 38%), mp=146 °C. ¹H NMR (250 MHz, CDCl₃): δ =0.86 (t, ³*J*=6.7 Hz, 3H, CH₂CH₃), 1.25 (t, ³*J*=7.1 Hz, 3H, CH₂CH₃), 1.35 (m, 8H, CH₂CH₂C₄H₈CH₃), 1.66 (m, 2H, CH₂CH₂C₅H₁₁), 2.72 (t, ³J=8.0 Hz, 2H, CH₂C₆H₁₃), 3.99 (s, 2H, CH₂COO), 4.19 (q, ³J=7.16 Hz, 2H, OCH₂CH₃), 7.53 (d, ${}^{3}J$ =8.8 Hz, 1H, Ar), 7.68 (dd, ${}^{4}J$ =2.6 Hz, ${}^{3}J$ =8.9 Hz, 1H, Ar), 8.25 (d, ${}^{3}J$ =2.5 Hz, 1H, Ar), 8.46 (s, 1H, Ar). ${}^{13}C$ NMR (250 MHz, CDCl₃): δ =14.0, 14.1 (CH₃), 22.6, 29.0, 29.4, 30.0, 31.5, 31.7, 41.8 (CH₂), 61.4 (OCH₂CH₃), 115.1 (C), 120.2 (CH), 122.5 (C), 126.0 (CH), 130.3, 135.2 (C), 135.5, 137.2 (CH), 154.1, 157.8, 159.1, 169.3 (C), 176.6 (C=O). IR (ATR, cm⁻¹): $\tilde{\nu}$ =2923 (br, w), 1730 (m), 1667 (s), 1556 (w), 1431 (s), 1337 (m), 1314 (w), 1271 (m), 1173 (m), 1089 (m), 968 (w), 891 (w), 791 (m), 712 (m), 578 (m), 542 (w). MS (EI, 70 eV): m/z (%)=417 (M⁺, ³⁷Cl, 4), 415 (M⁺, ³⁵Cl, 13), 328 (100), 370 (8), 344 (61), 298 (25), 270 (64), 207 (7). HRMS (EI) calcd for C₂₃H₂₆ClNO₄ (M⁺, ³⁵Cl): 415.155487; found: 415.15449.

3.2.20. Methyl 2-(3-allyl-5-oxo-5H-chromeno[2,3-b]pyrid-2-yl)-acetate (**4**t)

Starting with 3-cyanochromone (**1a**) (400 mg, 2.33 mmol), **2j** (917 mg, 3.0 mmol), Me₃SiOTf (0.54 mL, 3.0 mmol) and NEt₃ (0.6 mL, 4.66 mmol), **4t** was isolated as a colourless solid (275 mg, 38%), mp=124 °C. ¹H NMR (CDCl₃, 250 MHz): δ =3.48 (d, ³*J*=6.1 Hz,

2H, CH₂CHCH₂), 3.68 (s, 3H, OCH₃), 3.96 (s, 2H, CH₂), 4.98–5.16 (m, 2H, CHCH₂), 5.86–5.96 (m, 1H, CHCH₂), 7.32–7.38 (m, 1H, ArH), 7.53 (dd, ${}^{3}J$ =8.5 Hz, ${}^{4}J$ =0.6 Hz, 1H, ArH), 7.67–7.74 (m, 1H, ArH), 8.23 (dd, ${}^{3}J$ =7.8 Hz, ${}^{4}J$ =1.5 Hz, 1H, ArH), 8.44 (s, 1H, ArH). ¹³C NMR (75 MHz, CDCl₃): δ =35.8, 41.5 (CH₂), 52.4 (CH₃), 115.5 (C), 117.8 (CH₂), 118.4 (CH), 121.5 (C), 124.5, 126.6 (CH), 132.0 (C), 134.5, 135.5, 138.1 (CH), 155.6, 158.3, 158.8 (C), 169.6, 177.4 (C=O). IR (KBr, cm⁻¹): $\tilde{\nu}$ =3065 (w), 2995 (w), 2841 (w), 1738 (s), 1668 (s), 1609 (s), 1559 (m), 1429 (s), 1344 (s), 1269 (m), 1190 (s), 1165 (m), 997 (m), 916 (w), 766 (s), 670 (w). GC–MS (EI, 70 eV): *m/z* (%)=309 (M⁺, 85), 278 (11), 249 (100), 236 (35), 220 (16), 191 (5), 152 (5), 124 (6), 77 (8), 51 (3). Anal. Calcd (%) for C₁₈H₁₅NO₄: C, 69.89; H, 4.89; N, 4.53. Found: C, 6980; H, 4.97; N, 4.30.

3.2.21. Methyl 2-(3-allyl-7-chloro-5-oxo-5H-chromeno[2,3-b]pyrid-2-yl)acetate (**4u**)

Starting with 1e (200 mg, 0.97 mmol), 2j (380 mg, 1.26 mmol), Me₃SiOTf (0.22 mL, 1.26 mmol) and NEt₃ (0.27 mL, 1.94 mmol), 4u was isolated as a colourless solid (100 mg, 30%), mp=177 $^{\circ}$ C. ¹H NMR (CDCl₃, 250 MHz): δ =3.64 (d, ³*J*=6.3 Hz, 2H, CH₂CHCH₂), 3.84 (s, 3H, OCH₃), 4.12 (s, 2H, CH₂), 5.14–5.34 (m, 2H, CHCH₂), 5.98–6.12 (m, 1H, CHCH₂), 7.65 (d, ³*J*=8.9 Hz, 1H, ArH), 7.81 (dd, ³*J*=8.5 Hz, *J*=2.5 Hz, 1H, ArH), 8.36 (d, ⁴*J*=2.3 Hz, 1H, ArH), 8.59 (s, 1H, ArH). 13 C NMR (75 MHz, CDCl₃): δ =35.8, 41.5 (CH₂), 52.4 (CH₃), 115.2 (C), 117.9 (CH₂), 120.0 (CH), 122.5 (C), 126.0 (CH), 130.4, 132.4 (C), 134.3, 135.6, 138.1 (CH), 154.0, 158.2, 159.2 (C), 169.5, 176.4 (C=O). IR (KBr, cm^{-1}): $\tilde{\nu}$ =3052 (w), 2999 (w), 2950 (w), 1738 (s), 1667 (s), 1608 (s), 1475 (s), 1348 (s), 1311 (m), 1272 (s), 1169 (s), 1137 (m), 1000 (m), 639 (w), GC-MS (EI, 70 eV); m/z (%)=345 (M⁺, ³⁷Cl, 20), 343 (M⁺, ³⁵Cl, 60), 285 (³⁷Cl, 43), 283 (³⁵Cl, 100), 270 (29), 248 (10), 219 (7), 178 (10), 149 (13), 97 (19), 69 (55), 57 (50). Anal. Calcd (%) for C₁₈H₁₄ClNO₄: C, 62.89; H, 4.10; N, 4.07. Found: C, 62.86; H, 4.31; N, 3.60.

3.2.22. Ethyl 2-(5-oxo-3-phenyl-5H-chromeno[2,3-b]pyrid-2-yl)-acetate (**4v**)

Starting with 3-cyanochromone **1a** (256 mg, 1.5 mmol), **2k** (656 mg, 1.95 mmol), Me₃SiOTf (0.35 mL, 1.95 mmol) and Et₃N (0.45 mL, 3.0 mmol), **4v** was isolated as a colourless solid (320 mg, 62%), mp=152 °C. ¹H NMR (CDCl₃, 250 MHz): δ =3.85 (s, 3H, CH₃), 4.65 (s, 2H, CH₂), 7.11–7.27 (m, 5H, ArH), 7.38 (m, 2H, ArH), 7.54 (m, 1H, ArH), 7.72 (m, 1H, 7-H), 8.21 (dd, ³*J*=7.9 Hz, ⁴*J*=1.5 Hz, 1H, Ar-H), 9.13 (s, 1H, ArH). ¹³C NMR (62 MHz, CDCl₃): δ =42.5 (CH₃), 52.6 (CH₂), 114.3 (C), 118.6 (CH), 121.6, 123.2 (C), 125.1, 126.5, 126.8 (CH), 128.4, 129.2 (2C, CH), 135.9 (CH), 138.1 (C), 141.1 (CH), 155.5, 160.5, 165.1 (C), 167.7, 176.8 (C=O). IR (neat, cm⁻¹): $\tilde{\nu}$ =3048 (w), 3061 (w), 3028 (w), 3007 (w), 2948 (w), 2929 (w), 1725 (s), 1669 (s), 1595 (s), 1547 (m), 1466 (s), 1413 (s), 1314 (m), 1270 (s), 1214 (s), 1069 (m), 968 (m), 765 (s), 742 (s), 690 (s). GC–MS (EI, 70 eV): *m/z* (%)=345 (M⁺, 100), 313 (56), 286 (28), 256 (8), 228 (12). HRMS (EI) calcd for C₂₁H₁₅O₄N (M⁺, ³⁵CI): 345.09956; found: 345.09971.

3.2.23. Methyl 2-[3-(4-methylphenyl)-5-oxo-5H-chromeno[2,3-b]pyrid-2-yl]acetate (**4**w)

Starting with **1a** (0.256 mg, 1.5 mmol), Me₃SiOTf (219 mg, 0.18 mL, 0.98 mmol), CH₂Cl₂ (13.5 mL) and 1,3-bis(trimethyl-silyloxy)-1,3-butadiene **2l** (0.683 mg, 0.98 mmol), **4w** was isolated as a yellow solid (333 mg, 63%), mp=173–174 °C. ¹H NMR (CDCl₃, 250 MHz): δ =2.23 (s, 3H, CH₃), 3.85 (s, 3H, CH₃), 4.60 (s, 2H, CH₂), 6.98 (d, *J*=7.8 Hz, 2H, ArH), 7.15 (d, 2H, ArH), 7.33–7.39 (m, 1H, ArH), 7.53 (d, *J*=7.87 Hz, 1H, ArH), 7.67–7.74 (m, 1H, ArH), 8.20 (m, 1H, ArH), 9.10 (s, 1H, ArH). ¹³C NMR (62 MHz, CDCl₃): δ =21.0 (CH₃), 42.1 (CH₂), 52.5 (OCH₃), 114.3 (C), 118.6 (CH), 121.6, 123.2 (C), 125.1, 126.8 (CH), 129.0 (2C, CH), 129.1 (2C, CH), 135.0 (C), 135.8 (CH), 136.1 (C), 141.1 (CH), 155.6, 160.5, 165.3 (C), 168.0, 176.8 (C=O). IR (KBr, cm⁻¹): $\tilde{\nu}$ =3084 (w), 3058 (w), 3009 (w), 2948 (w), 1720 (s), 1671 (s), 1613

 $\begin{array}{l} (m), 1600\,(s), 1597\,(s), 1548\,(m), 1467\,(s), 1442\,(m), 1412\,(s), 1314\,(m), \\ 1271\,(s), 1253\,(s), 1216\,(s), 1150\,(s), 1069\,(s), 793\,(m), 755\,(s), 615\,(m). \\ \text{GC-MS}\,(\text{EI}, 70\,\text{eV}):\, m/z\,(\%){=}359\,(M^+, 100), \, 327\,(M^+, 70), \, 298\,(17), \\ 285\,(5), 256\,(5), 228\,(4), 150\,(7). \, \text{HRMS}\,(\text{EI})\,\text{calcd}\,\,\text{for}\,C_{22}H_{17}O_4N\,(M^+): \\ 359.114605;\,\,\text{found:}\,\, 359.11521. \end{array}$

3.2.24. Ethyl 2-[3-(4-chlorophenyl)-5-oxo-5H-chromeno[2,3-b]pyrid-2-yl]acetate (**4**x)

Starting with 1a (256 mg, 1.5 mmol), 2m (723 mg, 1.95 mmol), Me₃SiOTf (0.36 mL, 1.95 mmol) and NEt₃ (0.45 mL, 3.0 mmol), 4x was isolated as a colourless solid (284 mg, 50%), mp=182 $^{\circ}$ C. ¹H NMR (CDCl₃, 250 MHz): δ=3.78 (s, 3H, CH₃), 4.52 (s, 2H, CH₂), 7.06-7.17 (m, 4H, ArH), 7.30 (m, 1H, ArH), 7.45 (m, 1H, ArH), 7.61 (m, 1H, ArH), 8.13 (dd, ³*J*=7.8 Hz, ⁴*J*=1.4 Hz, 1H, Ar–H), 9.06 (s, 1H, ArH). ¹³C NMR (62 MHz, CDCl₃): δ =41.8 (CH₃), 52.6 (CH₂), 114.5 (C), 118.6 (CH), 121.6, 123.0 (C), 125.8, 126.8 (CH), 128.5, 130.6 (2C, CH), 132.4 (C), 135.9 (CH), 136.5 (C), 141.3 (CH), 155.5, 160.5, 165.1 (C), 167.2, 177.3 (C=O). IR (KBr, cm⁻¹): $\tilde{\nu}$ =3076 (w), 3048 (w), 2952 (w), 2918 (w), 1729 (s), 1664 (s), 1613 (m), 1600 (s), 1547 (m), 1492 (w), 1483 (s), 1414 (s), 1338 (w), 1310 (m), 1271 (s), 1247 (s), 1216 (s), 1139 (m), 1065 (m), 943 (m), 765 (s). GC–MS (EI, 70 eV): *m*/*z* (%)=381 (M⁺, ³⁷Cl, 34), 379 (M⁺, ³⁵Cl, 100), 347 (46), 320 (15), 312 (59), 284 (13), 256 (14), 228 (9). HRMS (EI) calcd for C₂₁H₁₄O₄NCl (M⁺, ³⁵Cl): 379.06059; found: 379.06052.

3.2.25. Methyl 2-[7-chloro-3-(2-methoxyphenyl)-5-oxo-5Hchromeno[2,3-b]pyrid-2-yl]acetate (**4y**)

Starting with 1e (200 mg, 0.97 mmol), 2n (465 mg, 1.26 mmol), Me₃SiOTf (0.22 mL, 1.26 mmol) and NEt₃ (0.27 mL, 1.94 mmol), 4y was isolated as a colourless solid (144 mg, 40%), mp=172 °C. 1 H NMR (CDCl₃, 250 MHz): δ=3.55 (s, 3H, OCH₃), 3.68 (s, 3H, OCH₃), 3.79 (s, 2H, CH₂), 6.91–7.02 (m, 2H, ArH), 7.15 (dd, ${}^{3}J=7.4$ Hz, ⁴*J*=1.8 Hz, 1H, ArH), 7.33–7.39 (m, 1H, ArH), 7.49 (d, ³*J*=8.8 Hz, 1H, ArH), 7.64 (dd, ³*J*=8.8 Hz, ⁴*J*=2.5 Hz, 1H, ArH), 8.19 (d, ⁴*J*=2.3 Hz, 1H, ArH), 8.45 (s, 1H, ArH). ¹³C NMR (62 MHz, CDCl₃): δ=42.2 (CH₂), 52.1, 52.3 (CH₃), 110.8 (CH), 114.9 (C), 120.2, 121.0 (CH), 122.5, 125.5 (C), 125.9, 130.4, 131.3 (CH), 132.8 (C), 135.5, 139.0 (CH), 154.0, 156.2, 158.7, 159.6 (C), 169.8, 176.4 (C=O). IR (KBr, cm^{-1}): $\tilde{\nu}$ =3067 (w), 2985 (w), 2939 (w), 1727 (s), 1662 (s), 1597 (s), 1471 (s), 1432 (s), 1309 (m), 1259 (s), 1025 (m), 828 (m), 631 (w), 538 (w). GC-MS (EI, 70 eV): m/z (%)=411 (M⁺, ³⁷Cl, 8), 409 (M⁺, ³⁵Cl, 26), 338 (³⁷Cl, 27), 336 (³⁵Cl, 100), 306 (9), 243 (2), 168 (3), 97 (10), 83 (13), 71 (11), 69 (20), 57 (21), 44 (25). HRMS (EI) calcd for C₂₂H₁₆CINO₅ (M⁺⁺, ³⁵Cl): 409.07189; found: 409.07115.

3.2.26. Methyl 2-[7-methyl-3-(2-methoxyphenyl)-5-oxo-5Hchromeno[2,3-b]pyrid-2-yl]acetate (**4**z)

Starting with **1b** (200 mg, 1.08 mmol), **2n** (516 mg, 1.4 mmol), Me₃SiOTf (0.25 mL, 1.4 mmol) and NEt₃ (0.3 mL, 2.16 mmol), **4z** was isolated as a colourless solid (134 mg, 32%), mp=165 °C. ¹H NMR (CDCl₃, 250 MHz): δ =2.41 (s, 3H, CH₃), 3.54 (s, 3H, OCH₃), 3.68 (s, 3H, OCH₃), 3.78 (s, 2H, CH₂), 6.90–7.01 (m, 2H, ArH), 7.15 (dd, ³*J*=7.4 Hz, ⁴*J*=1.7 Hz, 1H, ArH), 7.32–7.39 (m, 1H, ArH), 7.43–7.53 (m, 2H, ArH), 8.02 (s, 1H, ArH), 8.46 (s, 1H, ArH). ¹³C NMR (62 MHz, CDCl₃): δ =20.8 (CH₃), 42.0 (CH₂), 52.0, 52.3 (CH₃), 110.7 (CH), 115.2 (C), 118.2, 120.9 (CH), 121.3, 125.8 (C), 126.0, 130.2, 131.4 (CH), 132.2, 134.4 (C), 136.7, 138.9 (CH), 153.9, 156.2, 159.0 (C), 169.9, 177.6 (C=0). IR (KBr, cm⁻¹): $\tilde{\nu}$ =3058 (w), 3046 (w), 2923 (w), 1742 (s), 1655 (s), 1488 (s), 1432 (s), 1253 (m), 1147 (s), 1020 (s), 834 (m), 794 (m), 630 (w), 542 (w). GC-MS (EI, 70 eV): *m/z* (%)=389 (M⁺, 35), 357 (9), 316 (100), 286 (11), 149 (8), 111 (18), 97 (32), 83 (41), 57 (65), 44 (90). HRMS (EI) calcd for C₂₃H₁₉NO₅ [M]⁺: 389.12597; found: 389.12577.

3.2.27. Methyl 2-(4-aza-2-methoxyxanthon-3-yl)acetate (4aa)

Starting with **1a** (171 mg, 1.0 mmol), Me₃SiOTf (289 mg, 1.3 mmol) and **2o** (377 mg, 1.3 mmol), **4aa** (92 mg, 31%) was

isolated as a yellow solid. ¹H NMR (300 MHz, CDCl₃): δ =3.74 (s, 3H, OCH₃), 3.99 (s, 3H, OCH₃), 4.03 (s, 2H, CH₂), 7.43 (m, 1H, Ar), 7.54 (d, ³*J*=8.1 Hz, 1H, Ar), 7.78 (m, 1H, Ar), 8.33 (dd, ³*J*=8.2 Hz, ⁴*J*=1.8 Hz, 1H, Ar), 8.06 (s, 1H, Ar). ¹³C NMR (DEPT, 75.5 MHz, CDCl₃): δ =39.1 (CH₂), 52.3, 56.5 (OCH₃), 115.1 (CH), 115.7 (C), 118.4 (CH), 120.9 (C), 124.4, 126.5, 135.3 (CH), 151.0, 152.1, 153.8, 155.6 (C), 169.7 (C=O, ester), 177.6 (C=O, ketone). MS (EI, 70 eV): *m/z* (%)=299 (M⁺, 100), 267 (28), 240 (41), 210 (46), 171 (12), 120 (13).

3.2.28. Ethyl 2-(5-oxo-3-phenoxy-5H-chromeno[2,3-b]pyrid-2-yl)-acetate (**4ab**)

Starting with 1a (400 mg, 2.62 mmol), 2p (1.25 g, 3.41 mmol), Me₃SiOTf (0.62 mL, 3.41 mmol), NEt₃ (0.72 mL, 5.24 mmol), 4ab was isolated as a colourless solid (595 mg, 66%), mp=144 $^{\circ}$ C. ¹H NMR (CDCl₃, 250 MHz): δ =1.13 (t, ³*J*=7.0 Hz, 3H, CH₃), 4.01 (s, 2H, CH₂), 4.09 (q, ³*J*=7.0 Hz, 2H, OCH₂CH₃), 6.98–7.00 (m, 2H, ArH), 7.08–7.15 (m, 1H, ArH), 7.26–7.33 (m, 3H, ArH), 7.49 (dd, ³*J*=8.5 Hz, ⁴J=0.7 Hz, 1H, ArH), 7.63-7.70 (m, 1H, ArH), 7.95 (s, 1H, ArH), 8.15 (dd, ³*J*=8.0 Hz, ⁴*J*=1.4 Hz, 1H, ArH). ¹³C NMR (62 MHz, CDCl₃): δ=14.1 (CH₃), 39.5 (CH₂), 61.3 (OCH₂), 116.1 (C), 118.3 (CH), 119.2 (2C, CH), 120.9 (C), 123.1, 124.5, 124.8, 126.5 (CH), 130.2 (2C, CH), 135.5 (CH), 150.6, 152.5, 154.9, 155.5, 155.7 (C), 169.0, 177.1 (C=O). IR (KBr, cm^{-1}): $\tilde{\nu}$ =3072 (w), 2985 (w), 2937 (w), 1730 (s), 1664 (s), 1470 (s), 1309 (s), 1220 (s), 1119 (m), 1024 (m), 771 (s), 757 (m), 689 (m), 498 (w). GC-MS (EI, 70 eV): *m*/*z* (%)=375 (M⁺, 100), 302 (10), 282 (12), 254 (88), 177 (44), 153 (13), 127 (54), 91 (10), 51 (7). Anal. Calcd (%) for C₂₂H₁₇NO₅: C, 70.39; H, 4.56; N, 3.73. Found: C, 69.78; H, 4.46; N, 3.55.

3.2.29. Ethyl 2-(7,9-dichloro-5-oxo-3-phenoxy-5H-chromeno-[2,3-b]pyrid-2-yl)acetate (**4ac**)

Starting with 1f (125 mg, 0.52 mmol), 2p (247 mg, 0.67 mmol), Me₃SiOTf (0.12 mL, 0.67 mmol) and NEt₃ (0.14 mL, 1.04 mmol), 4ac was isolated as a colourless solid (102 mg, 44%), mp=147 °C. 1 H NMR (CDCl₃, 300 MHz): δ =1.17 (t, ³*J*=7.0 Hz, 3H, CH₃), 4.07 (s, 2H, CH₂), 4.09 (q, ³*J*=7.0 Hz, 2H, OCH₂CH₃), 7.01 (m, 2H, ArH), 7.17 (m, 1H, ArH), 7.35 (m, 2H, ArH), 7.74 (d, ⁴*J*=2.6 Hz, 1H, ArH), 7.90 (s, 1H, ArH), 8.05 (d, ⁴*J*=2.6 Hz, 1H, ArH). ¹³C NMR (75 MHz, CDCl₃): δ=13.1 (CH₃), 38.6 (CH₂), 60.4 (OCH₂), 114.5 (C), 118.6 (2C, CH), 121.1 (CH), 121.7 (C), 123.5 (CH), 123.6 (C), 124.2 (CH), 129.0 (C), 129.4 (2C, CH), 134.4 (CH), 149.0, 150.6, 152.4, 153.2, 154.3 (C), 167.9, 174.7 (C=O). IR (ATR, cm⁻¹): $\tilde{\nu}$ =3073 (w), 2983 (w), 2916 (w), 1720 (s), 1671 (s), 1423 (s), 1225 (s), 1192 (s), 1120 (m), 1024 (m), 991 (m), 802 (m), 785 (s), 692 (m). GC–MS (EI, 70 eV): m/z (%)=447 ([M]⁺, [2×³⁷Cl], 1), 445 ([M]⁺, [³⁷Cl], [³⁵Cl], 2), 443 ([M]⁺, [2×³⁵Cl], 4), 400 (3), 398 (4), 352 (25), 350 (38), 324 (64), 322 (100), 294 (15), 266 (5), 174 (2), 94 (5), 65 (7). HRMS (EI) calcd for $C_{22}H_{15}Cl_2NO_5$ ([M]⁺, [2×³⁵Cl]): 443.03114; found: 343.03218.

3.2.30. Methyl 2-[3-(4-chlorophenoxy)-7,8-dimethyl-5-oxo-5H-chromeno[2,3-b]pyrid-2-yl]acetate (**4ad**)

Starting with **1h** (400 mg, 2.0 mmol), **2q** (1.00 g, 2.61 mmol), Me₃SiOTf (0.47 mL, 2.61 mmol) and NEt₃ (0.55 mL, 4.0 mmol), **4ad** was isolated as a colourless solid (280 mg, 33%), mp=155 °C. ¹H NMR (CDCl₃, 300 MHz): δ =2.26 (s, 3H, CH₃), 2.32 (s, 3H, CH₃), 3.61 (s, 3H, OCH₃), 3.99 (s, 2H, CH₂), 6.91 (d, ³*J*=7.5 Hz, 2H, ArH), 7.26 (d, ³*J*=7.3 Hz, 2H, ArH), 7.86 (s, 1H, ArH), 7.95 (s, 1H, ArH). ¹³C NMR (75 MHz, CDCl₃): δ =19.1, 20.6 (CH₃), 39.2 (CH₂), 52.3 (OCH₃), 61.5 (OCH₂), 116.3, 118.4 (C), 118.7 (CH), 120.4 (2C, CH), 123.6, 126.1 (CH), 129.9 (C), 130.0 (2C, CH), 133.9, 146.6, 149.9, 151.8, 153.9, 154.0, 154.5 (C), 169.5, 176.7 (C=O). IR (ATR, cm⁻¹): $\tilde{\nu}$ =3051 (w), 2956 (w), 2847 (w), 1730 (s), 1607 (s), 1471 (s), 1410 (s), 1318 (s), 1209 (s), 1145 (s), 1087 (s), 994 (m), 873 (m), 672 (w). GC-MS (EI, 70 eV): *m/z* (%)=425 (M⁺, ³⁷Cl, 1), 423 (M⁺, ³⁵Cl, 3), 392 (1), 364 (1), 296 (100), 266 (7), 238 (4), 127 (1), 99 (2). HRMS (EI) calcd for C₂₃H₁₈ClNO₅ (M⁺⁺, ³⁵Cl): 423.08620; found: 423.08680.

3.2.31. Methyl 2-[7,9-dichloro-3-(4-methylphenoxy)-5-oxo-5Hchromeno[2,3-b]pyrid-2-yl]acetate (**4ae**)

Starting with 1f (400 mg, 1.66 mmol), 2r (797 mg, 2.16 mmol), Me₃SiOTf (0.39 mL, 2.16 mmol) and NEt₃ (0.6 mL, 4.32 mmol), 4ae was isolated as a colourless solid (294 mg, 42%), mp=194 °C. ¹H NMR (CDCl₃, 250 MHz): δ=2.31 (s, 3H, CH₃), 3.65 (s, 3H, OCH₃), 4.09 (s, 2H, CH₂), 6.89 (d, ³*J*=8.5 Hz, 2H, ArH), 7.14 (d, ³*J*=8.1 Hz, 2H, ArH), 7.74 (d, ⁴*J*=2.6 Hz, 1H, ArH), 7.85 (s, 1H, ArH), 8.05 (d, ⁴*J*=2.5 Hz, 1H, ArH). ¹³C NMR (62 MHz, CDCl₃): δ=20.1 (CH₃), 39.3 (CH₂), 52.4 (OCH₃), 115.5 (C), 119.6 (2C, CH), 121.5 (CH), 122.6 (C), 124.5 (CH), 124.5, 130.0 (C), 130.9 (2C, CH), 135.1 (C), 135.3 (CH), 150.0, 152.1, 152.8, 152.9, 154.0 (C), 169.4, 175.7 (C=O). IR (KBr, cm⁻¹): ν=3068 (w), 2964 (w), 2924 (w), 1728 (s), 1666 (s), 1508 (s), 1429 (s), 1396 (s), 1272 (m), 1172 (m), 1016 (m), 787 (m), 718 (w), 527 (w). GC-MS (EI, 70 eV): m/z (%)=447 ([M]⁺, [2×³⁷Cl], 7), 445 ([M]⁺, [³⁷Cl], [³⁵Cl], 47), 443 ([M]⁺, [2×³⁵Cl], 7, 77), 386 (17), 384 (26), 311 (13), 266 (12), 239 (4), 149 (7), 105 (12), 97 (17), 84 (10), 71 (25), 44 (100). HRMS (EI) calcd for $C_{22}H_{15}Cl_2NO_5$ ([M]⁺, [2×³⁵Cl]): 443.03085; found: 343.03218.

3.2.32. Ethyl 2-[5-oxo-3-(phenylsulfanyl)-5H-chromeno-[2,3-b]pyrid-2-yl]acetate (**4af**)

Starting with 1a (400 mg, 2.33 mmol), 2s (1.18 g, 3.11 mmol), Me₃SiOTf (0.56 mL, 3.11 mmol) and NEt₃ (0.64 mL, 4.66 mmol), 4af was isolated as a colourless solid (465 mg, 51%), mp=88 °C. ¹H NMR (CDCl₃, 250 MHz): δ=1.30 (t, ³*J*=7.1 Hz, 3H, CH₃), 4.27 (q, ³*J*=7.1 Hz, 2H, OCH₂CH₃), 4.65 (s, 2H, CH₂), 7.04-7.13 (m, 3H, ArH), 7.24-7.32 (m, 3H, ArH), 7.47 (dd, ³*J*=8.3 Hz, ⁴*J*=0.6 Hz, 1H, ArH), 7.62–7.69 (m, 1H, ArH), 8.16 (dd, ³/=7.8 Hz, ⁴/=1.5 Hz, 1H, ArH), 9.05 (s, 1H, ArH). ¹³C NMR (62 MHz, CDCl₃): δ =14.1 (CH₃), 40.0 (CH₂), 62.0 (OCH₂), 114.6 (C), 118.6 (CH), 121.6, 123.1 (C), 125.1, 126.7, 127.0 (CH), 128.8 (2C, CH), 131.0 (2C, CH), 134.4, 134.9 (C), 135.9, 141.0 (CH), 155.5, 164.6 (C), 165.4, 176.9 (C=O). IR (KBr, cm⁻¹): $\tilde{\nu}$ =3074 (w), 2982 (w), 2930 (w), 1725 (s), 1674 (s), 1600 (s), 1551 (m), 1310 (m), 1264 (s), 1159 (m), 765 (m), 689 (m), 528 (w), 508 (w). GC-MS (EI, 70 eV): *m*/*z* (%)=391 (M⁺, 100), 58 (10), 345 (40), 282 (13), 254 (94), 226 (17), 196 (12), 170 (4), 109 (13), 65 (8). HRMS (EI) calcd for C₂₂H₁₇NO₄S [M]⁺: 391.08738; found: 391.08728.

3.2.33. Ethyl 2-{3-[(4-chlorophenyl)sulfanyl]-7,8-dimethyl-5-oxo-5H-chromeno[2,3-b]pyrid-2-yl}acetate (**4ag**)

Starting with 1h (400 mg, 2.0 mmol), 2t (418 mg, 2.6 mmol), Me₃SiOTf (0.46 mL, 2.6 mmol) and NEt₃ (0.55 mL, 4.0 mmol), 4ag was isolated as a colourless solid (515 mg, 56%), mp=147 °C. ¹H NMR (250 MHz, CDCl₃): δ =1.14 (t, 3H, ³*J*=7.1 Hz, CH₃), 2.09 (s, 3H, CH₃), 2.14 (s, 3H, CH₃), 4.10 (q, 2H, ³*J*=6.9 Hz, OCH₂CH₃), 4.43 (s, 2H, CH2), 6.92 (m, 2H, ArH), 7.05 (s, 1H, ArH), 7.09 (m, 2H, ArH), 7.73 (s, 1H, ArH), 8.90 (s, 1H, ArH). ¹³C NMR (62 MHz, CDCl₃): $\delta = 14.2, 19.2, 20.7$ (CH₃), 40.1, 60.9 (CH₂), 114.8 (C), 118.7 (CH), 119.4, 122.6 (C), 126.4 (CH), 129.0 (2C, CH), 132.3 (2C, CH), 133.1, 133.6, 134.6, 141.1, 147.0, 153.9, 160.0, 164.6 (C), 164.9, 176.5 (C=O). IR (neat, cm⁻¹): $\tilde{\nu}$ =3054 (w), 2975 (w), 2895 (w), 1703 (s), 1605 (s), 1463 (m), 1439 (s), 1240 (s), 1162 (s), 833 (s), 793 (m). GC-MS (EI, 70 eV): m/z (%)=455 (M⁺, ³⁷Cl, 17), 453 (M⁺, ³⁵Cl, 46), 407 (20), 311 (30), 282 (100), 266 (23), 144 (20), 109 (15), 44 (78). HRMS (ESI) calcd for $C_{24}H_{20}NO_4CIS$ (M⁺, ³⁵Cl): 453.07961; found: 453.07890.

3.2.34. Ethyl 2-{7-methyl-3-[(4-methylphenyl)sulfanyl]-5-oxo-5Hchromeno[2,3-b]pyrid-2-yl}acetate (**4ah**)

Starting with **1b** (400 mg, 2.16 mmol), **2u** (396 mg, 2.81 mmol), Me₃SiOTf (0.50 mL, 2.81 mmol) and NEt₃ (0.60 mL, 4.3 mmol), **4ah** was isolated as a colourless solid (572 mg, 63%), mp=148 °C. ¹H NMR (250 MHz, CDCl₃): δ =1.51 (t, 3H, ³*J*=7.2 Hz, CH₃), 2.38 (s, 3H, CH₃), 2.58 (s, 3H, CH₃), 4.48 (q, 2H, ³*J*=7.1 Hz, OCH₂CH₃), 4.83 (s, 2H, CH₂), 7.15 (d, 2H, ³*J*=7.91 Hz, ArH), 7.37 (d, 2H, ³*J*=7.6 Hz, ArH), 7.60

(d, 1H, ${}^{3}J=8.7$ Hz, ArH), 7.70 (dd, 1H, ${}^{3}J=6.91$ Hz, ${}^{4}J=2.5$ Hz, ArH), 8.21 (d, 1H, ${}^{4}J=2.62$ Hz, ArH), 9.30 (s, 1H, ArH). ${}^{13}C$ NMR (62 MHz, CDCl₃): $\delta=14.1$, 20.8, 21.0 (CH₃), 40.6, 61.9 (CH₂), 114.5 (C), 118.0 (CH), 121.0, 123.2 (C), 126.1 (CH), 129.6 (2C, CH), 131.0 (C), 131.9 (2C, CH), 135.2 (C), 137.1 (CH), 137.3 (C), 140.9 (CH), 153.7, 160.1, 164.7 (C), 165.5, 176.8 (C=O). IR (neat, cm⁻¹): $\tilde{\nu}=3075$ (w), 2979 (w), 2810 (w), 1731 (s), 1695 (s), 1475 (m), 1339 (s), 1249 (s), 1062 (s), 803 (s), 796 (m). GC–MS (EI, 70 eV): m/z (%)=419 (M⁺, 91), 404 (5), 373 (21), 268 (100), 240 (17), 210 (21), 105 (11). HRMS (ESI) calcd for C₂₄H₂₁NO₄S (M⁺)⁺: 419.11858; found: 419.11936.

3.2.35. Ethyl 2-{7,9-dichloro-3-[(4-methoxyphenyl)sulfanyl]-5-oxo-5H-chromeno[2,3-b]pyrid-2-yl}acetate (**4ai**)

Starting with 1f (400 mg, 1.66 mmol), 2v (891 mg, 2.16 mmol), Me₃SiOTf (0.39 mL, 2.16 mmol) and NEt₃ (0.6 mL, 4.32 mmol), 4ai was isolated as a colourless solid (366 mg, 45%), mp=153 °C. 1 H NMR (CDCl₃, 250 MHz): δ =1.28 (t, ³*J*=7.0 Hz, 3H, CH₃), 3.83 (s, 3H, OCH₃), 4.17 (s, 2H, CH₂), 4.23 (q, ³J=7.1 Hz, 2H, OCH₂), 6.91 (d, ³*J*=8.9 Hz, 2H, ArH), 7.41 (d, ³*J*=8.9 Hz, 2H, ArH), 7.77 (d, ⁴*J*=2.5 Hz, 1H, ArH), 8.06 (d, ⁴J=2.5 Hz, 1H, ArH), 8.20 (s, 1H, ArH). ¹³C NMR (75 MHz, CDCl₃): δ=14.1 (CH₃), 42.5 (CH₂), 55.4 (OCH₃), 61.5 (OCH₂), 115.3 (C), 115.6 (2C, CH), 121.5, 123.2 (C), 124.5 (CH), 130.1, 134.8, 135.1 (C), 135.4 (CH), 135.5 (2C, CH), 137.2 (CH), 149.9, 157.3, 159.0, 160.6 (C), 168.7, 175.2 (C=O). IR (KBr, cm⁻¹): $\tilde{\nu}$ =3070 (w), 2985 (w), 2836 (w), 1727 (s), 1668 (s), 1591 (s), 1413 (s), 1387 (s), 1253 (s), 1176 (s), 1024 (s), 830 (m), 787 (m), 523 (w). GC-MS (EI, 70 eV): m/z (%)=493 ([M]⁺, [2×³⁷Cl], 7), 491 ([M]⁺, [³⁷Cl], [³⁵Cl], 32), $489([M]^+, [2 \times {}^{35}Cl], 46), 419(10), 417(17), 384(13), 311(8), 266(8),$ 207 (3), 97 (15), 85 (11), 84 (10), 57 (34), 44 (100). Anal. Calcd (%) for C₂₃H₁₇Cl₂NO₅S: C, 56.34; H, 3.49; N, 2.86. Found: C, 56.33; H, 3.46; N, 2.87.

3.2.36. Ethyl 2-{7,9-dichloro-3-[(4-methoxyphenyl)sulfanyl]-5-oxo-5H-chromeno[2,3-b]pyrid-2-yl}propionate (**4aj**)

Starting with 1a (256 mg, 1.5 mmol), Me₃SiOTf (433 mg, 0.33 mL, 1.95 mmol), **2w** (560 mg, 1.95 mmol), CH₂Cl₂ (13.5 mL), EtOH (15 mL) and triethylamine (324 mg, 0.44 mL, 3.00 mmol), **4aj** was isolated as a yellow oil (149 mg, 34%). ¹H NMR (CDCl₃, 250 MHz): δ=1.12 (t, J=7.2 Hz, 3H, CH₃), 1.53 (d, J=7.2 Hz, 3H, CH₃), 3.92 (q, J=7.2 Hz, 1H, CH), 4.04–4.13 (m, 2H, CH₂), 7.32 (d, J=8.0 Hz, 2H, ArH), 7.50 (d, J=7.7 Hz, 1H, ArH), 7.64-7.70 (m, 1H, ArH), 8.18-8.21 (dd, *J*=1.4, 8.0 Hz, 1H, ArH), 8.58 (d, *J*=7.8 Hz, 1H, ArH). ¹³C NMR (62 MHz, CDCl₃): δ=14.0, 16.9 (CH₃), 48.3 (CH), 61.3 (OCH₂), 115.3 (C), 118.4, 119.7 (CH), 121.6 (C), 124.6, 126.6, 135.5, 137.9 (CH), 155.7, 159.8, 165.6 (C), 172.3, 177.3 (C=O). IR (KBr, cm⁻¹): $\tilde{\nu}$ =3307 (w), 3069 (w), 2980 (m), 2874 (w), 1730 (s), 1662 (s), 1614 (m), 1598 (s), 1559 (m), 1461 (s), 1397 (s), 1318 (w), 1250 (m), 1149 (m), 1107 (m), 1027 (w), 958 (m), 852 (m), 763 (s), 688 (m). GC-MS (EI, 70 eV): m/z (%)=297 (M⁺, 18), 252 (5), 225 (35), 224 (100). HRMS (EI) calcd for C₁₇H₁₅O₄N (M⁺): 297.09956; found: 297.099255.

3.2.37. Methyl 2-{7,9-dichloro-3-[(4-methoxyphenyl)sulfanyl]-5-oxo-5H-chromeno[2,3-b]pyrid-2-yl}butyrate (**4ak**)

Starting with **1a** (256 mg, 1.5 mmol), Me₃SiOTf (433 mg, 0.33 mL, 1.95 mmol), **2x** (560 mg, 1.95 mmol), CH₂Cl₂ (13.5 mL), EtOH (15 mL) and triethylamine (324 mg, 0.44 mL, 3.00 mmol), **4ak** was isolated as a yellow oil (136 mg, 31%). ¹H NMR (CDCl₃, 250 MHz): δ =0.88 (t, *J*=7.4 Hz, 3H, CH₃), 1.93–2.23 (m, 2H, CH₂), 3.46 (s, 3H, CH₃), 3.80 (t, *J*=7.7 Hz, 1H, CH), 7.31–7.40 (m, 2H, ArH), 7.52–7.55 (d, *J*=7.7 Hz, 1H, ArH), 7.66–7.73 (m, 1H, ArH), 8.20–8.24 (dd, *J*=1.4, 8.0 Hz, 1H, ArH), 8.58 (d, *J*=7.8 Hz, 1H, ArH). ¹³C NMR (62 MHz, CDCl₃): δ =12.0 (CH₃), 25.5 (CH₂), 52.3 (OCH₃), 55.7 (CH), 115.4 (C), 118.4, 120.1 (CH), 121.6 (C), 124.6, 126.6, 135.5, 137.9 (CH), 155.6, 159.8, 164.4 (C), 172.2, 177.3 (C=O). IR (KBr, cm⁻¹): $\bar{\nu}$ =3316 (w), 3068 (w), 2966 (m), 2875 (w), 2841 (w), 2705 (w), 1732 (s), 1651 (s), 1613 (m), 1597 (s), 1585 (m), 1599 (m), 1460 (s), 1397 (s), 1350 (w), 1194 (m), 1149 (m), 1103 (m),

1027 (w), 930 (m), 845 (m), 760 (s), 750 (m), 685 (m). GC–MS (EI, 70 eV): m/z (%)=297 (M⁺, 0.7), 269 (83), 238 (90), 182 (7). HRMS (EI) calcd for C₁₇H₁₅O₄N (M⁺): 297.09956; found: 297.098859.

3.2.38. Ethyl 6-aza-5-oxa-12-oxo-7,9,10,12-tetrahydronaphtacene-7-carboxylate (**4al**)

Starting with **1a** (240 mg, 1.4 mmol), Me₃SiOTf (404 mg, 0.33 mL, 1.82 mmol) and **2y** (573 mg, 1.82 mmol), **4al** (163 mg, 36%) was isolated as a yellow solid. ¹H NMR (300 MHz, CDCl₃): δ =1.29 (t, ³*J*=7.1 Hz, 3H, OCH₂CH₃), 1.92 (m, 2H, CH₂), 2.27 (m, 2H, CH₂), 2.97 (m, 2H, CH₂), 4.04 (t, ³*J*=6.1 Hz, 1H, CH), 4.26 (q, ³*J*=7.3 Hz, 2H, OCH₂CH₃), 7.39 (m, 1H, Ar), 7.57 (dd, ³*J*=8.0 Hz, ⁴*J*=1.0 Hz, 1H, Ar), 7.75 (m, 1H, Ar), 8.28 (dd, ³*J*=7.9 Hz, ⁴*J*=1.6 Hz, 1H, Ar), 8.43 (s, 1H, Ar). ¹³C NMR (DEPT, 75.5 MHz, CDCl₃): δ =14.2 (OCH₂CH₃), 20.0, 26.7, 27.8 (CH₂), 48.7 (CH), 61.2 (OCH₂CH₃), 115.5 (C), 118.5 (CH), 121.5 (C), 124.4, 126.6 (CH), 130.7 (C), 135.5, 137.6 (CH), 155.8, 158.0, 159.6 (C), 173.1 (C=O, ester), 177.6 (C=O, ketone). IR (KBr, cm⁻¹): $\tilde{\nu}$ =3444 (m), 2980 (m), 2946 (m), 1734 (s), 1663 (s), 1608 (s), 1559 (m), 1471 (s), 1471 (s), 1439 (s), 1415 (s), 1369 (m), 1313 (m), 1264 (m), 1226 (m), 1171 (s), 1063 (m), 1032 (s), 766 (s). UV-vis (CH₃CN, nm): λ_{max} (lg ε): 341 (3.94), 292 (4.10), 232 (4.47). MS (EI, 70 eV): *m/z* (%)=323 (M⁺, 98), 250 ([M-CO₂CH₂CH₃]⁺, 100), 235 (16), 207 (7), 103 (5), 77 (8).

3.2.39. Ethyl 6-aza-9-methyl-5-oxa-12-oxo-7,9,10,12tetrahydronaphtacene-7-carboxylate (**4am**)

Starting with **1a** (240 mg, 1.4 mmol), Me₃SiOTf (404 mg, 0.33 mL, 1.82 mmol) and 2z (573 mg, 1.82 mmol), 4am (145 mg, 32%) was isolated as a vellow solid. ¹H NMR (300 MHz, CDCl₃, dr=3:2): δ =1.13. $1.16 (d, {}^{3}I = 6.3 Hz, 3H, CH_{3}), 1.37 (m, 1H, CH_{2}, CH_{2}), 1.79 - 1.91 (m, 1H, 1H)$ CH₂, CH₂), 2.20–2.35 (m, 1H, CH₂, CH₂), 2.72–2.48 (m, 1H, CH, CH), 2.95-3.10 (m, 1H, CH, CH), 3.73, 3.83 (s, 3H, OCH₃, OCH₃), 4.08-4.15 (m, 1H, CH, CH), 7.38–7.44 (m, 1H, Ar, Ar), 7.59 (d, ³*J*=8.4 Hz, 1H, Ar, Ar), 7.73–7.79 (m, 1H, Ar, Ar), 8.28, 8.31 (t, ²*J*=2.4 Hz, 1H, Ar, Ar), 8.41, 8.45 (s, 1H, Ar, Ar). ¹³C NMR (DEPT, 75.5 MHz, CDCl₃, signals of main diastereomer): δ =21.2 (CH₃), 25.6 (CH), 34.2, 36.1 (CH₂), 48.1 (CH), 52.5 (CH₃), 115.6 (C), 118.5 (CH), 121.5 (C), 124.4, 126.7 (CH), 130.5 (C), 135.5, 137.1 (CH), 155.8, 159.0, 159.6 (C), 173.8, 177.6 (C=O). IR (KBr, cm^{-1}): $\tilde{\nu}$ =3437 (m), 2952 (m), 2926 (m), 1737 (s), 1661 (s), 1609 (s), 1559 (m), 1471 (s), 1418 (s), 1319 (m), 1267 (m), 1223 (m), 1197 (m), 1161 (m), 767 (m). UV–vis (CH₃CN, nm): λ_{max} (lg ε): 341 (4.00), 292 (4.14), 232 (4.49). MS (EI, 70 eV): *m*/*z* (%)=323 (M⁺, 28), 208 (34), 248 (43), 108 (7), 120 (100), 106 (34).

Acknowledgements

Financial support from the State of Pakistan (HEC scholarships for M.A.R. and N.R.), from the State of Mecklenburg-Vorpommern (scholarships for V.K. and S.M.) and from the DAAD (scholarship for S.M.) is gratefully acknowledged.

References and notes

- (a) Akira, N.; Toshihira, I.; Kiyoshi, U. J. Med. Chem. 1985, 28, 559; (b) Löwe, W.; Jeske, P. Liebigs Ann. Chem. 1987, 549.
- (a) Ghosh, C. K.; Sinha, R. D. K.; Mukhopadhyay, K. K. J. Chem. Soc., Perkin Trans. 1 1979, 1964; (b) Kubo, K.; Ukawa, K.; Kuzuna, S.; Nohara, A. Chem. Pharm. Bull. 1986, 34, 1108; (c) Zheng, H.; Lin, G.; Weng, L. L. Indian J. Chem. 1998, 37B, 933.
- (a) Iwasaki, H.; Kume, T.; Yamamoto, Y.; Akiba, K.-Y. Tetrahedron Lett. 1987, 6355; (b) Lee, Y.-G.; Ishimaru, K.; Iwasaki, H.; Ohkata, K.; Akiba, K. J. Org. Chem. 1991, 56, 2058. For the generation of thiobenzopyrylium triflates, see: (c) Beifuss, U.; Tietze, M.; Gehm, H. Synlett 1996, 182.
- 4. Hsung, R. P.; Zificsak, C. A.; Wei, L.-L.; Zehnder, L. R.; Park, F.; Kim, M.; Tran, T.-T. T. J. Org. Chem. **1999**, 64, 8736 and references cited therein.
- For reviews of domino reactions, see: (a) Tietze, L. F.; Beifuss, U. Angew. Chem. 1993, 105, 137; Angew. Chem., Int. Ed. Engl. 1993, 32, 131; (b) Tietze, L. F. Chem. Rev. 1996, 96, 115.
- For a review of domino reactions of 4-(silyloxy)benzopyrylium triflates with 1,3-bis(trimethylsilyloxy)-1,3-butadienes, see: Langer, P. Synlett 2007, 1016.
- 7. Langer, P.; Appel, B. Tetrahedron Lett. 2003, 5133.

- 8. For a review of 1,3-bis(trimethylsilyloxy)-1,3-butadienes in general, see: Langer, P. Synthesis 2002, 441.
- G. A.; Cameron, K. O. J. Am. Chem. Soc. **1980**, *102*, 3534; (b) Molander, G. A.; Cameron, K. O. J. Am. Chem. Soc. **1993**, *115*, 830.
 Appel, B.; Saleh, N. N. R.; Langer, P. Chem.—Eur. J. **2006**, *12*, 1221.
- 11. CCDC-669708 contains all crystallographic details of this publication and is available free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html or can be ordered from the following address: Cambridge Crystallographic Data Centre, 12 Union Road, GB-Cambridge CB21EZ; fax: +44 1223 336 033 or deposit@ccdc. cam.ac.uk.